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Abstract—The paper considers the problem of estimating the

parameters of the compound admittance matrix of three-phase

untransposed low- and medium-voltage electrical distribution

networks using synchrophasor measurements from phasor mea-

surement units (PMUs). The work proposes and analyses the

performance of a pre-processing strategy on the PMU’s raw

measurements which consists in grouping the raw measurements

in clusters and, then, using the averaged measurements from

each cluster for admittance matrix estimation. This step reduces

the noise level and discards similar measurements from each

cluster, ultimately improving the estimation quality of regression-

based estimation methods such as least squares (LS) and total

least squares (TLS). The proposed approach uses a linear estima-

tion model with phasor measurements of nodal voltages, nodal

injection currents, and branch currents. We adopt a realistic

measurement noise model in polar coordinates, which reflects

the accuracy class of measuring instruments and is projected

to rectangular coordinates. The proposed approach is validated

by performing simulated experiments for different CIGRE and

IEEE benchmark grids. Furthermore, the work includes different

sensitivity analyses on the pre-processing policy (cluster type and

size), availability of branch or injection currents measurements,

as well as with different noise levels on the measurement data.

Index Terms—Admittance matrix, untransposed and unbal-

anced three-phase, least-squares, total least-squares, power dis-

tribution grids.

I. INTRODUCTION

The key management and protection functions for the power
systems rely on the definition of suitable models that enable
studying the behaviour of the grid under different operating
conditions. Often, these models require accurate knowledge of
the electrical parameters and the grid topology to estimate the
state of the systems such as nodal voltages and branch currents
[1]–[3]. These models are used for a number of applications
such as optimal power flow (OPF)-based scheduling and
control (e.g. [4], [5]), state estimation (e.g. [6]), locating faults
(e.g. [7]), protection (e.g. [8]). Usually, these parameters are
derived by either using the data-sheets from the components
manufacturers [9] or by making off-line measurements [10].
The first method is widely applicable but the actual parameters
can be quite different from the nominal ones due to various
reasons, such as inaccurate information on the data-sheet, mis-
calibration or outdated parameters due to ageing (e.g. shunt ca-
pacitance of coaxial power cables). The second method is not
practical as it requires non-negligible investments by the grid
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operator. Inaccurate information on the grid parameters often
leads to erroneous modeling of the grid, causing inaccuracy in
the estimates of grid analysis tools such as power-flow, state-
estimation etc [11]–[14]. For example, [11] and [12] showed
the effect of parameter errors on state estimation and power
flows performance. The work in [14] shows the impact of
parameter errors on differential protection. In this context, we
propose a method to estimate the parameters of the compound
admittance matrix of electrical distribution networks.

Thanks to the deployment of phasor measurement units
(PMUs) and instrument transformers (ITs), the synchronized
phasor measurements from these devices offer the possibil-
ity of data-driven estimation of the network parameters. At
present, PMUs are largely deployed in the transmission grids,
but they are also getting installed for monitoring and control
of “active” distribution grids [15]–[17].

Recent works in this domain can be broadly clustered into
three categories focusing on different aspects of the estimation
process: i) assumption on the measurement noise model, ii)

solution techniques used for the parameters estimation and iii)

approximations in the modeling of the distribution grids.
The parameter estimation using PMUs measurements was

initially proposed in [18], [19]. Thereafter, several works have
been reported: the works in [20]–[24] proposed methods for
estimation of line parameters in transmission networks. The
work in [25] formulated the problem for identifying the ad-
mittance matrix directly from the synchronised measurements,
but it did not account for a realistic noise model and the
proposed model is very sensitive to even small noise. The
work in [26] formulated the problem for joint-estimation of
line parameters and topology using weighted total least squares
(WTLS) method. The formulation is non-convex and is solved
iteratively. The work assumes an unrealistic noise model by
adding an offset noise from historical data, however lacking
of physical significance. The works in [27]–[29] accounted
for the systematic error of the ITs in the parameter estima-
tion problem and used realistic measurement noise in polar
coordinates. The work in [30] considered the noise in polar
coordinates for three-phase systems and estimated equivalent
error model for positive sequence components.

The use of least squares (LS) is proposed for estimating the
parameters in [20]–[23], [25]. However, as shown in [31], it
does not perform well when the measurements are corrupted
with realistic measurement noise (in polar coordinates) as
LS ignores noise in some variables. WLS based parameter
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estimation was used in [27]. Some works have proposed
using error-in-variable (EIV) methods, such as the total least
squares (TLS) [26]. The TLS solution is equivalent to the
maximum likelihood estimation (MLE), when the noise on
the input and output variables is approximated by white
Gaussian distribution and is i.i.d. (independent and identically
distributed), otherwise the estimations can be worse than LS,
even if the TLS formulation is statistically more correct than
the LS [31]. This happens because TLS tries to estimate not
only the estimation variables but also the true and unobserved
values of the measurements. Also, when TLS is fed with a
large amount of measurements, its performance deteriorates
due to large dimension of measurement to be de-noised.
However, it is widely known that estimation methods achieve
better performance when fed with inputs characterised by low
measurement noise. For example, the work in [23] proposed a
moving window averaging on the raw data for improving TLS
based line parameter estimation by reducing the noise level.
The method was proposed for estimation of a transposed and
balanced line and used measurements of nodal powers along
with currents and voltages. Although this work proposed an
averaging strategy of raw PMU measurements, it did not fully
use the fact that this step preserves the mathematical struc-
ture of the original formulation and improves the estimation
performance.

Furthermore, in most of the existing works, it is often
assumed that the power networks are balanced and transposed
three-phase systems (e.g., [20]–[27]) with negligible shunt
components. These assumptions do not hold at the same
time for real distribution grids; the low voltage distribution
networks are often untransposed [32], [33], and characterised
by negligible shunt parameters, whereas medium voltage sys-
tems have non-negligible shunt parameters [32] (especially
in the presence of long coaxial cables) and are relatively
transposed systems. The works in [34]–[37] considered param-
eter estimation for a three-phase unbalanced and untransposed
systems, but their analysis is limited to estimation of single
line parameters instead of the whole compound admittance
matrix and neglect shunt admittances. Estimating the whole
compound admittance matrix is a complex problem as it
requires to estimate all the branch parameters having different
characteristics (e.g., short and long lines) within the network.
Also these methods rely on measurements of line currents
instead of injection currents which require twice the number
of measuring instruments.

In this context, compared to the existing literature, the key
contributions of this work are:

1) We propose a pre-processing strategy on the raw PMU
measurements for improving the estimation performance
of LS and TLS. The pre-processing consists of two
main steps: first, the raw measurements are grouped into
different clusters and, then, the averaged measurements
from each cluster are used for admittance estimation.
This process reduces the noise level of measurements,
ultimately improving the estimation performance of LS
and TLS.

2) We propose a PMU-based linear estimation model for
estimating the whole admittance matrix for untransposed

three-phase distribution networks (i.e. the so-called com-
pound admittance matrix) taking into account both branch
and shunt admittance matrices of the grid components
(i.e. with no approximation on the grid model).

The estimation models adopt realistic noise in polar coordi-
nates, reflecting the accuracy class of measuring instruments
that is projected onto the rectangular coordinates. The method
is validated by performing admittance estimation for different
CIGRE and IEEE benchmark networks. Furthermore, we per-
form sensitivity analysis on the estimation performance with
different noise levels on the measurement data, on the pre-
processing strategy (cluster type and size), and availability of
branch or injection currents measurements.

Compared to [20]–[23], [29], [34]–[37], the proposed
method has the following features: i) it estimates the whole
compound admittance matrix including the presence of shunt
admittances, ii) it uses a pre-processing strategy for reducing
the noise level ultimately improving the estimation perfor-
mance, and iii) it works with either injection or branch/line
current measurements, the former requires half the number of
measurements. Compared to [25]–[27], the proposed method
can be applied to untransposed three-phase grids accounting
for the presence of shunt parameters. It is worth noting that
this work does not assume knowing the nominal values of the
branch and shunt parameters compared to [27], [28].

The paper is organized as follows: Section II presents
the problem statement. Section III describes the estimation
techniques and the proposed pre-processing strategy on the
measurement data. Section IV introduces the case studies
including the description of a realistic noise model for the
measurements. Section V presents the estimation results and,
finally, Section VI summarizes the main contributions.

II. PROBLEM STATEMENT

We consider the problem of estimating the parameters of
the admittance matrix of a single- and three-phase distribution
network (assuming that the topology is known) using a set
of synchrophasor measurements that may include phase-to-
ground nodal voltages, nodal injection currents and branch
currents per phase.

In the following, we describe the poly-phase grid model,
which is then used to formulate the parameter estimation
problem for transposed and untransposed three-phase systems.
We use the same nomenclature and hypothesis as in [38].

Consider the generic case of a ground-referenced1 un-
balanced and untransposed2 polyphase power network with
G := {0} be the ground node, and P := {1, . . . , |P|} the
phases, N buses and L branches. The polyphase nodes, shunts
and branch indices are collected in the sets N := {1, . . . , N},
T := N ⇥ G = N and L := {1, . . . , L} respectively.
Figure 1 shows the topology of compound electrical pa-
rameters of a polyphase electrical circuit of the grid. The
polyphase terminals and wires are bundled into a line for the

1We assume that there exists a reference node i.e., ground, used as a
reference to measure the nodal phase-to-ground voltages.

2Therefore, branch impedances and shunt admittance matrices are not nec-
essarily circular-symmetric and triplets of three-phase voltages and currents
are unsymmetrical and unbalanced.
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sake of clarity. The compound branch impedance and shunt
admittance matrices are denoted by Zl(l 2 L) and Yt(t 2 T )
respectively.
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Fig. 1. Compound electrical parameters of the overall electrical circuit of the
grid: compound branch impedance matrices Zl(l 2 L) and shunt admittance
matrices Yt(t 2 T ). The polyphase terminals and wires are bundled into
single line for the sake of clarity.

Hypothesis 1: The grid consists of electrical components

which are passive and linear. The coupling between the phases

of the same component is significant, they can be represented

by polyphase ⇧-section or T-section equivalent circuits.

Hypothesis 2: The compound branch impedance matrices are

symmetric (Zl = Z
T
l ), invertible (9Yl = Z

�1
l ), and lossy

(<{Zl} < 0), 8l 2 L. The compound shunt admittance matrix

Yt is also symmetric (Yt = Y
T
t ), invertible (9Zt = Y

�1
t ),

we assume that the shunts are lossless (<{Yt} = 0), 8t 2 T .

It is worth pointing out that the symmetric property is a
consequence of reciprocity of electromagnetism imposed by
Maxwell’s equation.

Let Vn,p and In,p be the phasors of the nodal phase-to-
ground voltage and the injected current for the phase p 2 P
of the polyphase node n 2 N . The quantities defined for a
polyphase node n 2 N as a whole is written as:

Vn := colp2P(Vn,p) (1)
In := colp2P(In,p) (2)

and for the grid as a whole is

V := coln2N (Vn) (3)
I := coln2N (In) (4)

where the operator ”col” constructs a column vector.
From Ohm’s law, the injection currents is related to the

nodal voltage as:

I = YV, (5)

where Y is the compound admittance matrix defined as:

Y = (AP)TYLA
P +YT (6)

where,

YL = diagl2L(Yl) (7)
YT = diagt2T (Yt) (8)

are the primitive compound branch and the primitive com-
pound shunt admittance matrices respectively. The symbol AP

denotes the polyphase incidence matrix and is defined as

A
P = A⌦ diag(1|P|) (9)

where (1|P|) is a vector of ones with length |P|, ⌦ refers to
the Kronecker product, and A is the incidence matrix obtained
form the graph comprising of network branches as in [38].

Using (5) and (6), the injected current can be re-written as

I = ((AP)TYLA
P +YT )V (10)

I = (AP)T IL + IT (11)

where IL and IT refer to the branch and shunt current which
are defined analogously as in (2) and (4).

In the following, we show how eqs. (1) - (11) can be used
to derive linear models with branch and shunt parameters for
transposed and untransposed distribution grids, which will be
later used to estimate the compound admittance matrix.

1) Balanced and transposed three-phase case: A balanced
and transposed system can be represented by a single-phase
equivalent model, i.e |P| = 1 or A

P = A. Using the
definitions (7) and (8) and (10) the injected current can be
re-written as

I =
⇣
A

T diagl2L(Yl)A+ diagt2T (Yt)
⌘

coln2N (Vn) (12)

or, I = A
T diag(AV)coll2L(Yl)

+ diagn2N (Vn)colt2T (Yt).
(13)

Similarly, the branch current can be expressed as

IL = diag(AV)coll2L(Yl) (14)

Let us define the following matrices:

C = diag(A<{V}) (15a)
D = diag(A={V}) (15b)
E = diag(={V}) (15c)
F = diag(<{V}) (15d)
X

G = coll2L(<{Yl}) (15e)
X

B = coll2L(={Yl}) (15f)
X

T = colt2T (={Yt}) (15g)

then, the injected and branch current can be re-written as


<{I}
={I}

�
=


A

T
C �AT

D �E
A

T
D A

T
C F

�2

4
X

G

X
B

X
T

3

5 , and (16)


<{IL}
={IL}

�
=


C �D
D C

� 
X

G

X
B

�
(17)

respectively. Here, <(.) and =(.) refer to the real and imagi-
nary part of a complex quantity.
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2) Unbalanced and untransposed three-phase case: In this
case, |P| = 3, the line and shunt parameters are matrices of
dimension C3⇥3. To express the line and shunt parameters in
vector form, we propose transformations � and ⌦ given below.

The line and shunt admittance parameters, Yl and Yt are
symmetric (Hypothesis 2), we want to represent them by
unique elements in a vector form. Let Y mn

l (m,n = 1, 2, 3)
be the unique elements of Yl, we propose following transfor-
mation:

⌦(Yl) = ⌦

 2

4
Y 11
l Y 12

l Y 13
l

Y 12
l Y 22

l Y 23
l

Y 13
l Y 23

l Y 33
l

3

5
!

=

2

6666664

Y 11
l

Y 22
l

Y 33
l

Y 12
l

Y 23
l

Y 13
l

3

7777775
. (18)

The same can be written for the shunt admittance parameters.
To be able to express the branch and shunt parameters in vector
form, the voltages need to be transformed as following: �(Vn)
=

�

 2

4
Vn,1

Vn,2

Vn,3

3

5
!

=

2

4
Vn,1 0 0 Vn,2 0 Vn,3

0 Vn,2 0 Vn,1 Vn,3 0
0 0 Vn,3 0 Vn,2 Vn,1

3

5 .

(19)

Similarly, this transformation is applied to all the nodes by
�(V) = coln2N (�(Vn)).

Using the above transformation on all phase voltages and
branch and shunt parameters, eqs. (16) and (17) can be written
for a three-phase unbalanced and untransposed system with the
following definitions:

C = diagl2L(A
P
l <{�(V)}) (20a)

D = diagl2L(A
P
l ={�(V)}) (20b)

E = diagn2N (={�(Vn)}) (20c)
F = diagn2N (<{�(Vn)}) (20d)
X

G = coll2L(<{⌦(Yl)}) (20e)
X

B = coll2L(={⌦(Yl)}) (20f)
X

T = colt2T (={⌦(Yt)}). (20g)

Here, A
P
l is incidence matrix for l-th line, i.e. rows ((l �

1)|P|+ 1) to l|P| in A
P .

The problem considered in this paper is as follows. We
assume that the incidence matrix A

P is known, and we have a
collection of complex current I and voltage V measurements,
from which the matrices C,D,E and F are immediately
derived. The problem is then to estimate the unknown line and
shunt parameters X

G,XB and X
T by regression techniques

in (16) and (17).

III. METHODS

Hypothesis 3: The line series impedances and shunt admit-

tances are assumed to be constant during the period when

measurements were collected. The change in these parameters

due to temperature variations is neglected.

Hypothesis 4: We assume that the voltage and current phasor

measurements are available at every node of the grid.

Using equations (16)-(17) and Hypotheses 3 and 4, the
estimation problem can be formulated and solved by using
standard estimation techniques such as least squares (LS) and
total least squares (TLS). Eq. (16), in case of null measurement
noise, can be written for a time-index k as:

J(k) = H(k)X (21)

where H(k) =


A

T
C(k) �AT

D(k) �E(k)
A

T
D(k) A

T
C(k) F(k)

�
, J(k) =


<{I(k)}
={I(k)}

�
, and X =

2

4
X

G

X
B

X
T

3

5.

If we have K measurements of voltage and current phasors,
(21) can be expressed for all the K data-points to obtain an
over-determined system of linear equations as,

J = HX (22)

where J = [J(1); . . . ;J(K)] and H = [H(1); . . . ;H(K)].
The equality in (22) holds in case of null noise, which

is not the case for real measurements. In presence of the
measurement noise, the observations J and H are given as:

J = bJ+�J, �J ⇠ N (0,QJ) (23)

H = bH+�H, �H ⇠ N (0,QH) (24)

where, bJ and bH are the true (unobserved) values, �J and
�H are the measurement noises, and QJ and QH represent
the noise covariance matrices for J and H respectively.

It should be noted that the measurements on the branch
currents (if available) can also be embedded in the estimation
model using Eq. (17) in a similar way. In eq. (22), X is the
unknown parameter to be estimated, whereas H and J are
obtained using the voltage and current measurements from
PMUs. In the following section, we describe the estimation
techniques to estimate X in (22).

A. Estimation techniques

In the followings, we describe two estimation techniques
which are used later to estimate the network parameters.

1) Least Squares (LS): the LS method assumes that noise
�H is negligible and the noise �J is homoscedastic (i.e.
elements of diag(QJ) are all equal). The LS solution is:

X
⇤
LS = (HT

H)�1
H

T
J (25)

2) Total Least Squares (TLS): in real measurements, H

contains measurement noise, then LS solution is no longer
optimal statistically. In [31], TLS was developed, which tries
to estimate the true (unobserved) bH and bJ along with X. This
leads to a non-linear and non-convex problem and has too
many unknowns to determine. The work in [31] derived ana-
lytical solution, with an assumption that noise terms �J,�H

are Gaussian and i.i.d., using singular value decomposition
(SVD) and is briefly described below.

Let the SVD of [H|J] is

[H|J] = U⌃VT (26)
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where, V =


VH,H VH,J

VJ,H VJ,J

�
,⌃ = diag(�, . . . ,�). (27)

The TLS solution is given as:

X
⇤
TLS = �VH,JV�1

J,J. (28)

Eq. (28) can be simplified when J is vector, it is given as

X
⇤
TLS = (HT

H� �2I)�1
H

T
J (29)

where, � refers to the smallest singular value of [H|J] [39],
[40]. Eq. (29) can be interpreted as method to remove the error
co-variance matrix (approximated by �2I ).

By nature, when the TLS is fed with large number of
measurements (with non-negligible noise), it attempts to es-
timate large amount of variables, namely the true value of
the measurements and admittance parameters. This results in
poor estimates as reported in [31]. To tackle this issue, we
propose a pre-processing strategy on the raw measurements: a
linear transformation that reduces the dimension of the input
measurements as well as the noise level while preserving the
original structure of the problem. Due to this pre-processing,
the TLS is now trying to estimate the average values of the
measurements. This task is easier than the original because
there are fewer data points and reduced noise. The pre-
processing strategy is described as follows.

B. Measurement pre-processing by cluster averaging

Measurement noise of PMUs and sensing instruments im-
pacts H and J observation matrices. Realistic instrument
accuracy classes (e.g., 0.5 and 1) lead to poor estimation
performance, further aggravated by the nonlinear transposition
from polar to rectangular coordinates, as reported in [37]. We
propose to pre-process the input measurements because, as it
will be shown later, it is conducive to improve the estimation
performance. The pre-processing strategy consists in, first,
grouping the raw measurements in a given number of clusters
according to similarity features. Then, measurements within
the same cluster are averaged and used in the estimation
process instead of the raw measurements. The considered
similarity features are: nodal voltage magnitudes, current
magnitudes, and, for unbalanced and untransposed networks,
sequence-domain voltage magnitudes and sequence-domain
current magnitudes. The first group of features helps to detect
different operating conditions in the grids due to large power
variations and transient events (e.g., inrush currents), whereas
the second, is more suitable for unbalanced conditions. The
use of combinations of these features is discussed in the
results section. Clustering and averaging the measurements
achieve not only filtering out measurement noise but also
reducing the number of similar measurements in the estimation
process, improving the condition number of H and estimation
performance of LS and TLS. It is worth highlighting that
since averaging is linear, it can be efficiently implemented
by applying a linear transformation to Eq. (22).

The cluster-averaging procedure is illustrated Algorithm 1.
The kmeans algorithm is used for clustering. Inputs to the
kmeans are the raw voltage and current phasor measurements
{V, I}, features (defined above) and number of clusters Nc,

and the outputs are voltage and current phasor measurements
grouped in different clusters [{V, I}1, . . . , {V, I}Nc ]. After
creating the clusters, the algebraic mean is computed for all the
elements in the same cluster. We decided to use the kmeans
as a clustering scheme as it is a widely used and effective
method in unsupervised learning applications. Specifically, we
used MATLAB built-in function that, regarding the clustering
initialisation, uses the kmeans++ algorithm [41].

The similarity features, such as the magnitudes of the nodal
voltages and currents, are used into the kmeans algorithm to
decide the basis of the grouping of the raw measurements. We
choose magnitudes of the voltages and currents as clustering
features because i) as illustrated in [42], [43], the distribution
of measurement noise is truly white in polar coordinates, ii)

magnitudes work well to identify the voltage and current im-
balances in three-phase unbalanced systems and iii) it results in
a linear estimation model, which is preserved by the averaging.
Sec. V-D shows how the cluster-averaging process affects the
grouping of the raw-measurements and their characteristics.

Algorithm 1 Cluster-averaging
1: procedure CLUSTERAVG
2: choose number of clusters = Nc

3: [{V, I}1, . . . , {V, I}Nc ] kmeans({V, I}, features,
Nc)

4: for l = 1 : Nc do

5: {Ṽ, Ĩ}l = mean({V, I}l)
6: end for

7: end procedure

A naive averaging approach would be to perform block
time-averaging of the measurements (Algorithm 2). However,
this naive method has the disadvantage of losing important
information associated to transients and unbalances contained
in the raw measurements by averaging blindly time-contiguous
data blocks. The advantage of cluster-averaging is that it
groups and averages the data based on the similarity features
and is independent of time. In the results section, we compare
the estimation performance of the cluster-averaging vs the
block-averaging method.

Algorithm 2 Block-averaging
1: procedure BLOCKAVG
2: choose block size = tm
3: number of blocks, Nb = data-length/tm,
4: Divide in Nb blocks:
5: [{V, I}1:tm , . . . , {V, I}((Nb�1)tm+1):Nbtm ]  {V, I}1:T
6: for l = 1 : Nb do

7: {Ṽ, Ĩ}l  mean({V, I}(l�1)tm+1):ltm)
8: end for

9: end procedure

In summary, the measurement pre-processing is to obtain a
proper grouping of the raw measurements. After creating the
clusters, the algebraic mean is computed for all the elements
(both the magnitudes and phases of the voltages and currents)
in the same cluster. The averaged values (both the magnitudes
and phases) are then used in the admittance matrix estimation.
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IV. SIMULATION SETUP

A. Input data-set

To evaluate and compare the performance of the proposed
method, we estimate the admittance parameters of selected
power grid benchmarks starting from noisy phasor measure-
ments, computed as follows. First, load flows are solved to
compute ground-truth values of voltage and current phasors.
Then, these are corrupted with i.i.d. zero-mean Gaussian noise
to simulate noisy measurements, as discussed in the next sub-
section. This procedure is described in Algorithm 3. The nodal
active and reactive power injections in the load flows are from
the experimental set-up of the Distributed Electrical Systems
Laboratory at EPFL [44] (peak consumption of 350 kW with
95 kWp of PV generation). These measurements are rescaled
according to the nominal power of the respective node of the
test network. The rescaling is performed by first dividing the
nodal demand/generation profiles of the original system in [44]
by their nominal nodal powers and, then, multiplying by the
nominal nodal powers of the test network.

Algorithm 3 Raw-data generation
Require: Admittance: Y, nodal power injections: P,Q

1: procedure GENDATA
2: for k = 1 : K do

3: [V(k), I(k)] = LoadFlow(P(k),Q(k), Y)
4: for � = [V(k), I(k)] do

5: �m = N (0, ↵
3 |�|)

6: |�| = |�|+ �m
7: �� = N (0, �

3 )
8: arg(�) = arg(�) + ��
9: � = |�|exp(j arg(�))

10: end for

11: end for

12: end procedure

B. Noise model

The measurements of ITs are characterised by errors in
polar coordinates, not in rectangular coordinates, therefore,
we introduce noise in polar coordinates defined by the IT
class types. The voltage and current measuring instruments
are characterized by the phase and magnitude error, specified
by the manufactures in form of percentage, ↵, for magnitudes
and in radians, �, for the phase error. The values of ↵ and �
are listed in the Table I as defined by [42], [43].

TABLE I
ERRORS SPECIFICATIONS FOR DIFFERENT CLASS OF INSTRUMENT

TRANSFORMERS DEFINED BY [42], [43].

IT class Voltage transformers Current transformers

mag. error phase error mag. error phase error

(↵) [%] � [rad.] (↵) [%] � [rad.]

0.1 0.1 1.5e-3 0.1 1.5e-3
0.2 0.2 3e-3 0.2 3e-3
0.5 0.5 6e-3 0.5 9e-3
1 1 12e-3 1 18e-3

Hypothesis 5: The ITs do not have a bias, and they behave

according to standards; the magnitude and phase angle error

of the ITs are Gaussian. The noise introduced by the PMUs

is negligible compared to the one of the ITs (e.g. [45], [46]).

We add a Gaussian and i.i.d. unbiased noise (Hypothesis 5)
to the voltage and current measurements in the polar coordi-
nates, which is then projected onto the rectangular coordinates.
Although Gaussian property may not be preserved upon the
transformation, the transformed noise can be approximated to
a Gaussian distribution for the IT classes3 of Table I as shown
in [37].

C. Performance metrics

We measure the performance of the estimation algorithm by
the three following metrics.

• The Normalized Mean Square Error (NMSE) between the
true (bX) and the estimated (X⇤) quantities as:

E(X⇤, bX) = EX =
||bX�X

⇤||2
||bX||2

(30)

EX is a dimensionless quantity, the value EX = 0
indicates a perfect estimation.

• Comparison in terms of per unit (pu) of the esti-
mated and original parameters; pu is computed by di-
viding the parameter impedance/admittance by the base
impedance/admittance. The base impedance/admittance is
computed using the base power and base voltage of the
system.

• Element-wise relative error of the estimated admittance. It
is expressed for real and imaginary parts of each element
of the compound admittance matrix defined as

�Y = bY �Y
⇤ = <(�Y) + j=(�Y) (31)

where bY and Y
⇤ are true and estimated admittance

matrices, �Y is the element-wise error on estimated
admittance. We define the relative element-wise error
of estimated admittance on real (�<Ỹ) and imaginary
(�=Ỹ) elements as

�<Ỹ = <(�Y)↵<( bY) (32a)

�=Ỹ = =(�Y)↵=( bY) (32b)

where ↵ refers to Hadamard division (i.e., element-
wise division of a matrix). Later, we show these relative
component-wise errors on the real and imaginary part of
the admittance matrix in a heatmap plots for the different
strategies. �<Ỹ,�=Ỹ are dimensionless as they are
relative errors (these relative errors are zero for a perfect
estimation).

• Uncertainty of the estimated parameters: is computed by
their variances. The variances of the estimates are given
by

�X =
p
(�2

rdiag(HT
H)�1) (33)

3According to [42], [43], the maximum measurement noise for a calibrated
IT (i.e. without a bias) is associated to the the magnitude and phase errors
reported in Table I.
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Fig. 2. Flow diagram for the admittance matrix estimation using cluster-
averaged data.

where �r is estimated variance of the residuals in (22)
post-estimation. We determine the uncertainty corre-
sponding to 99% confidence interval approximated by
±3 �X.

V. RESULTS AND DISCUSSION

We use the data sets from simulated experiments on dif-
ferent benchmark distribution grids, as described earlier, to
estimate their admittance parameters. We compare the estima-
tion performances using: i) the raw measurements (denoted by
“Raw-data”), ii) the pre-processed data with block-averaging
(denoted by “Block-averaging”) and iii) the pre-processed
data with cluster-averaging (denoted by “Cluster-averaging”).
Figure 2 summarizes the steps used for the estimation using
cluster-averaged data. Raw measurements are directly used for
the estimations in the“Raw-data” case. They are not subject
to any pre-processing and all the measurements are used once
for the estimation of the parameters. The results are reported
for both LS and TLS techniques.

A sensitivity analysis w.r.t different levels of measurement
noise is presented. Then, a performance comparison is pre-
sented against different clustering strategy (such as cluster
features, number of clusters). And finally, we compare the esti-
mation performances with availability of branch and injection
currents measurements.

A. Estimation performance on benchmark test cases

We present a detailed estimation performance analysis
applied to the IEEE 4-bus benchmark network. It is an
unbalanced and untransposed three-phase distribution system
with artificially added shunt parameters. The details on the
parameters, topologies and nominal demand can be found in
[33]. The topology is shown in Fig. 3. The estimations are
performed with an estimation model comprising of both the
injection and branch currents measurements. We use a single
day of simulated measurements of nodal voltages, branch,
and injection currents (Algorithm 3) at a 1-second resolution.
We first consider instrument type of class 0.2 (Table I). We

Fig. 3. Topology of the adopted IEEE 4-bus network.

compare the estimation performance when using directly the
raw measurements (from Algorithm 3), block-averaging (first
Algorithm 3 then Algorithm 2) and cluster-averaging (first
Algorithm 3 then Algorithm 1). For the first one, we use all
the measurements for the admittance estimation. For the last
two, the estimations are compared using the same number of
blocks as the number of clusters to have a fair comparison. We
use 1-hour blocks in the block-averaging method of Algorithm

2 and 24 clusters (24 clusters in a day according to block-
averaging of 1-hour as blocks) in the cluster-averaging method
of Algorithm 1. The corresponding averaged values of each
cluster or block are used for the admittance matrix estimation.
A sensitivity with cluster size and features will be discussed
later in the paper.

Table II shows the estimation performance for IEEE 4-bus
unbalanced and untransposed three-phase network. It shows

TABLE II
ESTIMATION PERFORMANCE FOR THE IEEE 4-BUS NETWORK.

Data Method EXG EXB EXT EY
Raw-data LS 0.124 0.172 0.337 0.181

TLS 0.027 0.035 0.147 0.038
Block- LS 0.191 0.145 0.016 0.163

averaging TLS 0.229 0.117 0.021 0.137
(1-hour block)

Cluster- LS 0.008 0.002 0.014 0.003
averaging TLS 0.008 0.002 0.014 0.003

(24 clusters)

the NMSEs using LS and TLS techniques. The first, second
and the third rows show estimations when using raw, block-
averaged and cluster-averaged data, respectively. It shows the
NMSEs for conductances, susceptances, shunts and compound
admittance matrices denoted by EXG , EXB , EXT and EY
respectively (as defined in (30)).

As it can be seen that the estimations are poor using the raw
data, whereas they improve significantly with cluster-averaged
data and thus have better estimation of the admittance matrix.
With the cluster-averaging policy, the NMSEs decreases by 2-3
orders of magnitude compared to the raw-data. The estimations
using block-averaging are also poor compared to the cluster-
averaging and slightly better than the raw-data case. The
block-averaging method performs the worst with TLS.

Fig. 4 shows the plots of the true and estimated three-
phase line and shunt parameters for the LS using the raw-data,
block-averaging, and cluster-averaging cases. We also show
the uncertainty of the estimates using error bars corresponding
to 99 % confidence interval. The upper, middle and the bottom
plots show the comparison for the true and estimated conduc-
tances, susceptances and shunts, respectively. The estimates
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(a) Conductance estimation

(b) Susceptance estimation

(c) Shunt estimation

Fig. 4. Estimation performance of the parameters (a) conductances (b) susceptance and (c) shunts of the IEEE 4-bus untransposed and unbalanced test
network with raw measurements, block-averaged and with cluster-averaged data with LS. Error bars on top of each estimated value shows the uncertainty of
the estimates (99 % confidence interval) using (33). L1, L2, L3 refer to different branches and a, b, c refer to different phases of the IEEE 4-bus system in
Fig. 3.

are expressed in per unit (pu) as described in Sec. IV-C (we use
respectively the base power and voltage of 6 MVA and 4.16 kV
corresponding to a base admittance of 0.3467 Siemens.) From
the plots, it is clear that the estimation model with cluster-
averaging successfully estimates the longitudinal and shunts
parameters and has the least uncertainty of the parameter
estimates, whereas the estimates using the raw-data and block-
averaging have high biases and uncertainties. Also, it can be
observed that the methods using the raw measurements and
block-averaging fail to identify the parameters which are zero
(line L2 and shunts for all the lines are assumed to have zero
off-diagonal elements in the studied IEEE 4-bus test case).
Indeed they are estimated to be non-zero, whereas cluster-
averaging correctly estimates it.

We also show the heatmaps of the element-wise relative er-
ror for the real and imaginary part of the compound admittance
matrix. Fig. 5(a-b), (c-d) and (e-f) shows the estimation error
for LS with raw-data, block-averaging and cluster-averaging
strategies, respectively. The heatmap plots have node indices
of the network as x- and y- axes, whereas the color shows
the element-wise estimation error on non-zero elements of the

admittance matrix using (32). The heatmap has the dimension
of 12 on x- and y-axis because we are dealing with a 3-phase
4 node system with an admittance matrix dimension of 12
⇥ 12. The comparison shows that the estimations with raw-
data and block-averaging have high errors with maximum error
upto 200 %. In contrast, we obtain near-perfect estimations by
using the cluster-averaging strategy with a maximum absolute
element-wise error below 3 %.

In view of the above, we can conclude that the pre-
processing on raw-data by cluster-averaging largely improves
the estimation performance compared to using the raw-data
directly or simple block-averaging.

1) Other test cases: We also perform estimation on sev-
eral other networks (BT = balanced and transposed, UU =
unbalanced and untransposed). The results are summarized in
Table III. We show the NMSEs on admittance estimation (EY)
for different publicly available test cases.

From the comparison, it can be seen that the proposed
method gives good estimations for all the tested networks.
With TLS, we observe that the NMSEs are high in case of raw-
data. This happens because the TLS tries to compensate for the
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Element-wise relative error computed via (32) on real (left) and
imaginary (right) part of the estimated compound admittance matrix for the
IEEE 4-bus test network using the raw data in (a-b), using the block-averaging
in (c-d) and using the cluster-averaged in (e-f) with LS.

TABLE III
NMSE ON ADMITTANCE ESTIMATION FOR DIFFERENT NETWORKS.

Test-networks Raw-data Cluster-averaging

LS TLS LS TLS
CIGRE MV (BT) 0.897 6.137 0.016 0.012
CIGRE LV (BT) 0.620 5.877 0.002 0.002
CIGRE LV (UU) 0.371 4.77 0.033 0.037

CIGRE microgrid (BT) 0.884 6.812 0.044 0.019
IEEE13 (UU) 0.585 2.961 0.060 0.056
IEEE123 (BT) 0.946 15.551 0.060 0.060

original measurement noise estimating the true (unobserved)
bH and bJ along with the admittance parameters resulting in
large number of estimation variables compared to the LS. This
is mitigated by the cluster-averaging which reduces the noise
level on the measurements and number of true measurements
to be estimated.

B. Sensitivity analysis

1) Noise level: we perform estimations using simulated
experiments with noise of the IT classes 0.1, 0.2, 0.5 and 1
(Table I) according to Algorithm 3. The results are reported
for IEEE 4-bus network. We use the same clustering features
and Nc as in Sec V-A. Table IV shows the NMSEs on
admittance estimation for LS and TLS with respect to noise
level. As it can be seen, the NMSEs obtained using cluster-
averaging is 2-3 order of magnitude better compared to the
case without averaging, for all cases. The TLS method with
cluster-averaging policy performs the best.

TABLE IV
NMSE ON ADMITTANCE ESTIMATION (EY ) WITH DIFFERENT NOISE

LEVELS FOR IEEE 4-BUS NETWORK.

IT class Raw-data Cluster-averaging

LS TLS LS TLS
0.1 0.064 0.012 0.002 0.002
0.2 0.181 0.038 0.003 0.003
0.5 0.404 0.148 0.010 0.009
1 0.548 9.171 0.018 0.014

2) Clustering strategy: we investigated different clustering
strategies for the cluster-averaging policy. We vary the cluster-
ing features used in Algorithm 1 and use them for admittance
estimation. The analysis is presented in terms of NMSEs on
admittance estimation in Table V for IEEE 4-bus network with
IT class 0.5. From the analysis, we conclude that the clustering
features comprising of the magnitudes of the nodal voltages
and currents perform the best.

TABLE V
NMSE ON ADMITTANCE ESTIMATION (EY ) WITH CLUSTERING FEATURES.

Clustering features LS TLS

Voltage magnitude 0.036 0.024
Current magnitude 0.021 0.021

Voltage and current magnitude 0.010 0.009
Sequence voltage magnitude 0.066 0.432
Sequence current magnitude 0.054 0.056

Sequence voltage and current magnitude 0.019 0.018

We also analysed the sensitivity on the estimation perfor-
mance with the number of clusters in the cluster-averaging
policy. The feature used for this simulation is the dominant
feature inferred from the last analysis, namely, the magnitudes
of voltages and currents together. The analysis is presented for
the IEEE4 system with IT class of 0.5. We perform cluster
averaging on the raw data of 86,400 data points (corresponding
to per second single day measurement) with Nc = 25, 50,
100, 300, 500, 1000, 5000 and 10,000 (refer to Algorithm

1). The NMSEs on estimated admittance matrix (EY) are
plotted in Fig. 6 for LS and TLS techniques. As it can be
observed, the estimation performance improves with decrease
in number of clusters. This happens because the cluster-
averaging scheme reduces the noise levels on the voltage and
current measurements, leading to improvement in estimation
quality. The estimations worsen slightly if we go below
Nc = 100, this is because the number of input data points
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in the estimation model becomes smaller or comparable to
the number of variables to be estimated.

Fig. 6. NMSE (EY) as a function of the cluster size for IEEE 4-bus network.

C. Injection current vs branch current model vs both

We here compare the performance of the proposed es-
timation process when using: i) injection currents and ii)

branch currents along with injection currents. The comparison
is done for the IEEE 4-bus system with IT class 0.2 in
Table VI. The analysis is presented for LS. We use the same
settings for the block- and cluster-averaging as in Sec V-A.
The comparison shows that the estimation using the cluster-
averaging method is not affected significantly even without
branch currents information, whereas the other two methods
estimations deteriorate. It is worth noting that the use of
the branch current measurements improves the estimation
performance significantly, especially for the shunt admittances.
This happens because the estimation variables are related
to the branch current (as in (14)) individually and can be
estimated in a decoupled way, whereas the estimation variables
are interlinked to each other in the model relying on injection
currents, and so they are not decoupled.

TABLE VI
ESTIMATION PERFORMANCE FOR THE IEEE 4-BUS NETWORK WITH

AVAILABILITY OF MEASUREMENTS ON INJECTION CURRENT AND BRANCH
CURRENTS.

Data Current EXG EXB EXT EY

Raw-data
Injection 0.138 0.213 2.392 0.221
Branch + 0.124 0.172 0.337 0.181Injection

Block- Injection 0.381 0.201 0.101 0.239
averaging Branch + 0.191 0.145 0.016 0.163(1-hour block) Injection
Cluster- Injection 0.008 0.002 0.027 0.008

averaging Branch + 0.008 0.002 0.014 0.003(24 clusters) Injection

D. Further Analysis

In this section, we show how the cluster-averaging method
groups the raw-data in different clusters. This analysis gives
an insight on why cluster-averaging improves the parameter
estimation.

Effect of cluster averaging on the raw measurement data:

we show this analysis for the IEEE 4-bus test network (Fig. 3).
We use the same clustering features (voltage and current
magnitudes) and Nc as in Sec V-A.

Fig. 7a shows the distribution of the 1-sec time-indices
(86400-time steps) during the day in the 24 clusters as a

result of kmeans clustering. In Fig. 7b and Fig. 7c, we also
show the variation of the nodal voltage and current magnitudes
respectively for the non-zero injection nodes which were used
for the clustering. Fig. 7a y-axis (left) shows the cluster
number, and the corresponding time-steps that fall into clusters
are shown in black. In the same plot, we also include the
number of elements per cluster on the right y-axis of Fig.
7(a). As it can be seen, the clustering does not group the
data that is contiguous in time. Instead, data belonging to a
given cluster is distributed throughout the day. In particular,
the clustering scheme groups measurements with similar mag-
nitudes (considering all the nodes and phases). For example,
in cluster-6, most of the measurements are balanced among
phases with voltage magnitudes close to 1 pu and current
injections below 0.05 pu. Similarly, in clusters-9, 19, and 21,
the measurements observing a sudden dip in the nodal voltages
(caused by increased demand at node 4 phase c) are clustered
together. Another example is cluster-12 and 13, which capture
slight variation in the voltages due to a dip in demand at node
4 phase a. Clusters-2, 18, and 24 captures sharp generation
peaks due to PV injections from node 2 (phase b) and node 3
(phase b).

Furthermore, to show the distribution of the data as a
result of the averaging strategies, we show zero and negative
sequence normalized by positive sequence component for all
the nodes for each cluster in the bar plot of Fig. 8. They are
defined as follows: Neg. seq. and Zero seq. are defined as the
percentage of the negative and zero sequence components with
respect to the positive sequence components, respectively. It
is given as Neg. seq.

|Vneg|
|Vpos|

⇥ 100% (34)

and Zero seq.

|Vzero|
|Vpos|

⇥ 100% (35)

where Vpos,Vneg,Vzero are positive, negative and zero se-
quence components respectively.

Fig 8(a) and 8(b) show the barplots corresponding to
Neg. seq. and Zero seq., respectively for block-averaged
and cluster-averaged data. As seen from the figure, cluster-
averaging produces clusters where the positive and negative
sequence components are higher than in the block-averaging
case. Table VII summarizes the mean and max of Neg.

TABLE VII
PERCENTAGE OF NEGATIVE AND ZERO SEQUENCE COMPONENTS WITH

RESPECT TO POSITIVE SEQUENCE COMPONENTS.

Method Neg. seq. (%) Zero seq. (%)

mean max mean max
Block-averaging 0.32 0.80 0.69 2.04
Cluster-averaging 0.49 1.71 1.15 4.05

seq. and Zero seq. for all the clusters. In view of the above
comparisons, it can be seen that the cluster averaging provides
higher values of positive and negative sequence components
compared to the ones obtained using the block averaging.
This feature helps to take into account the contribution of
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(a)

(b)

(c)

Fig. 7. Distribution of the 86400 time steps during the day into 24 clusters as a result of cluster averaging: (a) measurements assigned to different clusters
with number of elements (right) per cluster, (b) nodal voltage magnitudes (in pu) and (c) nodal current magnitudes (in pu) for all the nodes and phases (except
slack node) for 24 hrs.

off-diagonal elements of line impedance and shunt admittance
matrices in the grid’s compound admittance matrix.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we estimate the parameters of compound
admittance matrix for generic unbalanced and untransposed

three-phase distribution grid. Thanks to the synchrophasor
measurements from PMUs, the problem is formulated as a
linear estimation model using the measurements of nodal
voltages, nodal injection currents and branch currents. We
proposed a preprocessing of the measurement data to improve
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(a)

(b)

Fig. 8. Distribution of negative and zero sequence components normalised by
the positive sequence component after block-averaging and cluster averaging
on raw-data.

the estimation results. The method was validated by simulated
experiments on various benchmark networks.

From the analysis, it can be concluded that the proposed
method is capable to accurately estimate the longitudinal and
shunts elements of a generic unbalanced three-phase system.
The pre-processing of data using cluster-averaging improves
the estimation performance by two-three order of magnitudes.
The sensitivity analysis with noise levels showed that the pre-
processing method works even with low accuracy class of
IT (i.e. class 1). The estimations with cluster-averaged data
performs best when magnitudes of the nodal voltages and
currents are used as features in the clustering scheme. The
estimation performs better with fewer clusters. It was also
found that the information on branch currents improves the
estimation performance, especially on the networks with non-
negligible shunt elements.

Possible extensions of this work include investigating the
estimation problem considering biased measurements from
non-calibrated IT, fewer PMUs, and the impact of time-
varying environmental factors such as conductor temperature
and line thermal loading to estimate the varying nature of grid
parameters (i.e. line resistances).
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