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Abstract

Distributed photovoltaic (PV) generation is typically connected to power distribution grids, which are not designed to host a large
amount of production if it is significantly larger than their nominal electricity demand. Given the prominent role of PV in energy
transition pathways, modeling the existing power distribution infrastructure’s constraints and limitations is key for its reliable
techno-economical analysis and expansion.

As countrywide models of the distribution grids are, in general, not available, this paper first tackles the problem of estimating
medium voltage (MV) distribution grids starting from publicly available datasets. It then proposes a method to estimate the PV
generation hosting capacity of such grids and extend it through energy storage systems.

As a final contribution and ultimate objective, this paper proposes a method to derive cost-optimal plans for countrywide deploy-
ment of PV generation and energy storage systems considering the MV power distribution infrastructure’s technical limitations.
The distributed PV generation potential is modeled with high-spatially resolved capacity factors. Results are discussed using
Switzerland as a case study.
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Acronyms

BESS Battery Energy Storage System
CDF Cumulative Distribution Function
DSO Distribution System Operator
EHV Extra High Voltage
ENTSOE European Network of Transmission

System Operators for Electricity
GCP Grid Connection Point
GHI Global Horizontal Irradiance
GIS Geographical Information System
GW GigaWatt
GWh GigaWatthour
HV High Voltage
LV Low Voltage
kW KiloWatt
MVA MegaVoltAmpere
MV Medium Voltage
MW MegaWatt
OPF Optimal Power Flow
PV Photo-Voltaic
POA Plane of Array
SOE State-of-Energy
SD Standard Deviation
TSO Transmission System Operator
TWh TeraWatthours

1. Introduction

Photo-voltaic (PV) generation is experiencing a significant
growth thanks to the decreasing costs of the installations and
reduced carbon footprint [1]. In the period 2010-2019, PV has
been the most deployed power source among renewables, with
over 600 GW of newly connected generation capacity [2].

Assessing the generation potential of distributed PV has at-
tracted significant attention in the recent literature. For exam-
ple, the work in [3] performs rule-based estimations and [4]
uses a GIS to assess it for a large part of Europe considering the
land availability. The considered spatial scales go from city to
subcontinental levels, as in [5–10] and [11], respectively.

The works discussed above focus on estimating the PV
generation potential without considering the impact on the
power distribution systems. Distributed PV generation, such
as rooftop PV plants installed either on urban industry or ru-
ral environments, are typically connected to distribution grids,
which, however, are designed to primarily deliver power to con-
sumers and, as a matter of fact, can interface a limited amount
of power generation. This limitation is due to the DSO’s re-
quirements to satisfy the physical constraints of the power grid
assets. The amount of PV generation that a distribution grid can
connect without violations of the grid constraints is called PV
hosting capacity.

As power distribution systems are an important asset of the
electrical infrastructure and upgrade costs to increase their gen-
eration hosting capacity are substantial [12], a reliable techno-
economical assessment of the distributed PV generation poten-
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tial should be done in conjunction with an accurate assessment
of the PV hosting capacity of the existing distribution grids.
Motivated by this reason, this paper considers the problem of
estimating the PV generation potential at the scale of a country
subject to the local distribution grids’ limitations.

The PV hosting capacity of distribution grids is typically as-
sessed for MV and LV distribution systems with probabilistic
load flows applying the Monte Carlo method [13–15], or by
less computationally intensive variations [16], and OPF mod-
els [17, 18]. Load flow- and OPF-based analyses require the
knowledge of the grid topology, lines characteristics (length,
physical parameters, buried/aerial type), and demand and PV
generation profiles. Due to the large diversity of distribution
grids in terms of topology and demand patterns, it is generally
not possible to extend the results from a few known networks to
the level of a country, which, depending on its size, might have
thousands of MV distribution grids with di↵erent features.

As grid data are generally confidential, obtaining detailed
distribution grid information for many networks to perform ex-
tensive load flows, is generally not an option. This challenge
has inspired researchers to estimate grid topologies and charac-
teristics from public data sets. For example, the works in [19–
23] use data from existing grid models to estimate information
of unobserved grids (i.e., supervised learning). On the other
hand, the works [24–27] used socio-economic data, like pop-
ulation density map and electricity demand, to generate distri-
bution networks models without prior knowledge on the power
grids (i.e., unsupervised).

In this paper, we investigate the PV hosting capacity of MV
distribution grids for a whole country, using Switzerland as a
case study. We consider MV networks because, according to
[12], they account for the most significant part of the total grid
upgrade costs when extending the PV generation hosting ca-
pacity. As grid data for the whole country are not available,
we first propose an unsupervised method to infer their topology
and characteristics starting from the publicly available locations
of the EHV nodes and georeferenced energy demand data at
high spatial resolution. With respect to existing unsupervised
methods in [24–27] described above, our method relies on less
information, requiring only the location of the EHV substations
and the spatial distribution of the demand. Then, we proceed
by identifying the PV hosting capacity of each estimated grid
with a tractable OPF based on linearized grid models, including
also how to optimally deploy BESSs to increase the grids’ PV
hosting capacity. Finally, we determine the countrywide cost-
optimal deployment of PV generation and BESSs to achieve a
target level of PV installed capacity accounting for the spatial
information on the capacity factor of PV generation.

Compared to the works in [1, 3] that report country-specific
analyses of the PV potential and works in [9, 10, 28–30] that
specifically refer to Switzerland, we estimate, for the first time
in the literature, the PV generation potential for a whole country
subject to the limitations of the existing distribution networks
infrastructure. Compared to the works in [13–15] that evaluates
the PV hosting capacity of small systems, we propose a method
that can be extended to large areas, that estimates grid data and
includes the deployment of BESSs to increase the PV hosting

capacity.
In summary, the main contributions of this paper are:

• an unsupervised method to estimate MV grids starting
from publicly available data;

• a tractable convex OPF model to estimate the PV host-
ing capacity of distribution grids, including cost-optimal
BESSs siting and sizing to increase it;

• a tractable convex optimization problem to determine
countrywide cost-e�cient PV and BESS deployments
plans to accommodate a target PV generation level ac-
counting for the capacity factor of PV generation;

• the assessment of the optimal deployment plan for PV sys-
tems and BESSs in Switzerland to accommodate the PV
generation target envisaged by the national energy strat-
egy accounting for the constraints of the distribution grids.

The rest of this paper is organized as follows. Section 2 de-
scribes the methods to estimate the MV networks. We discuss
the results of this process already in Section 2 so that, in the
following sections, we can resort to these results for clarity and
progress in the problem formulation. Section 3 describes the
PV hosting capacity problem, including the sizing and siting of
the BESSs. Section 4 presents and discusses the results of the
countrywide optimal deployment of PV systems and BESSs Fi-
nally, Section 5 concludes this paper.

2. Estimation of countrywide models of medium voltage
power distribution networks

In this section, we describe the procedure to estimate the
countrywide models of MV distribution grids. The procedure is
graphically represented in Fig. 1 and summarized next. Starting
from the locations of the EHV substations, we approximate the
geographical region that each substation serves by partitioning
the country with Voronoi diagrams (as described in subsection
2.1). We call these partitions EHV areas. Then, for each EHV
area, we process the geographical distribution of the electricity
demand to infer the position of the HV substations (subsection
2.2.2). By re-applying these two steps using the HV substation
positions as input, we first identify the areas served by each HV
substation, called HV areas. Finally, we find the locations of
the MV substations (subsection 2.3). Once the location of the
MV nodes are known, a routing scheme is used to estimate the
topology and cable parameters of the relevant MV grids (sub-
section 2.4).

In order to exemplify the description of the proposed algo-
rithms, in the following of this paper we specifically refer to
the case of Switzerland.

2.1. Identification of EHV areas
EHV/HV substations adapt the power grid voltage level from

a value suitable for transmission over long distances to a more
practical value for short-distance transmission and more suit-
able to be transformed by secondary and tertiary substations to
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Figure 1: Flow chart for the estimation of countrywide models of medium voltage power distribution networks.

the final level at which electricity is consumed. As opposed to
secondary and tertiary substations, the locations of the primary
substation are available in public databases (e.g. [31]). We use
them as the first step to infer the rest of the network.

In total, we consider 148 georeferenced EHV substations.
The locations of the EHV nodes are from the dataset [32], that
is derived from ENTSOE information. It was verified by visual
inspection from aerial images that not all the locations from
[32] correspond to the real ones, as also acknowledged on the
ENTSOE website.1 The inaccurate locations were corrected,
when possible, by considering the locations reported in the col-
laborative dataset,2 which were found accurate after being ver-
ified one by one on aerial images. The locations of the EHV
nodes are shown in Fig. 2a.

Starting from the locations of the EHV substations, we ap-
ply Voronoi diagrams to approximate the region that each EHV
node serves. Given an image and a collection of coordinates
within that image, a Voronoi diagram (one per set of coordi-
nates) is the closest locus of points to those coordinates. We
use Voronoi diagrams because we reasonably assume that the
electrical demand in a certain area is served by the closest sub-
station. This modeling choice is also proposed in [25, 33–35].
The result of the Voronoi partitioning is shown in Fig. 2b.

2.2. Identification of the locations of the HV/MV primary sub-
stations

2.2.1. Distribution of the electrical demand
Power distribution systems were designed to deliver electric-

ity to end customers. Therefore, we expect their topology and
power ratings to reflect the geographical distribution of the de-
mand for electricity. We leverage this notion and we start from
the distribution of the electricity demand over the country to in-
fer the topology of distribution systems. First, we estimate the
distribution of the electricity demand as described next.

The work in [36] reports the statistics of the sectorial (indus-
trial, commercial and residential) electricity consumption for

1https://www.entsoe.eu/data/map/
2
https://en.wikipedia.org/wiki/List_of_

EHV-substations_in_Switzerland

Table 1: Composition of electricity demand in di↵erent sectors for Switzerland
for 2014 [36].

Sector Electricity demand (GWh)
Residential 18,333
Commercial 17,531

Industrial 19,028

each canton in Switzerland. This information gives already a
comprehensive overview of the countrywide distribution of the
electricity demand. However, since power distribution systems
extend far deep into local regions, higher spatially resolved data
are needed to estimate their topology. The Swiss Federal Of-
fice for Topography3 has mapped the heat demand for space
heating and cooling for industrial, commercial, and residen-
tial buildings with a resolution of 100x100 meters. Since the
heat demand follows the building distribution and that buildings
are also large consumer of electricity (due to various electrical
equipment, besides the obvious case of electric space heating
[37, 38], that reinforces the correlation among the two), we as-
sume that the electricity and heat demands follow the same spa-
tial distribution. With this assumption, we model the electric-
ity demand map by rescaling heat demand map by appropriate
coe�cients such that its sum over space amounts to the total
electricity demand for each sector reported in Table 1. The esti-
mated countrywide electricity demand map is shown in Fig. 3a.
Fig. 3b is an illustrative example of the electrical demand distri-
bution within a single Voronoi cell. The geographical area each
Voronoi cell is supplied by the substation corresponding to that
cell.

2.2.2. Identification of the HV/MV primary substations
The location of the HV/MV secondary substation is deter-

mined by analyzing the electrical demand map within each
EHV area according to the following procedure.

1. Identify clusters with contiguous demand. To do so, we
first derive a binary image from the electrical demand map,

3http://map.geo.admin.ch/
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(a) (b)

Figure 2: Identification of EHV areas: (a) locations of the considered 148 EHVs substations in Switzerland and (b) approximated regions served by each substation
after Voronoi partitioning.

(a) (b)

Figure 3: Estimated electricity demand map of: (a) Switzerland and (b) a single EHV area. The blue polygon refers to an EHV area obtained using Voronoi partition.

where Boolean true pixels denote non-zero electrical de-
mand, and vice-versa. Then, to identify clusters with con-
tiguous demand, we apply binary image segmentation, that
partitions the input binary map into clusters containing
pixels of the same kind (true or false) only. For the binary
image segmentation, we use the bwboundaries Matlab
function [39]. The result of this process for the example
EHV area of Fig. 3b) is shown in Fig. 4a;

2. On the one hand, clusters with total demand exceeding a
pre-established threshold are recursively partitioned into
smaller clusters using Algorithm 1. On the other hand,
neighbor small clusters are aggregated until their total
power demand reaches the threshold and so as to justify
the presence of a secondary substation. The result of this
step is illustrated in Fig. 4b. Threshold L in Algorithm 1
is an informed estimated computed as

average power demand
number of EHV substation · 5 =

63 TWh/8760 h
148 · 5 ⇡ 10 MW,

(1)

where 63 TWh is the total electricity demand in Switzer-

land in 2015 [40] and 5 is the estimated average number
of HV/MV nodes served by each EHV/HV substation.

3. The location of each secondary substation is chosen at the
geographical center of the convex envelope encompassing
the respective aggregated cluster, as shown in Fig. 4c.

Fig. 5a shows the distribution of the demand interfaced by the
various primary substations, and the first row of Table 2 reports
its mean and maximum value. It can be observed that, even if a
static threshold of 10 MW is used to generate the clusters, the
demand within each cluster is finally spread around this value.
On the one hand, larger values of the total demand happen be-
cause when merging multiple clusters, their aggregated demand
might exceed the threshold. On the other hand, smaller values
are because certain areas have low demand.

2.3. Identification of the HV areas and MV/LV secondary sub-
stations

Once the locations of the primary substations are found,
we apply the Voronoi partioning and cluster-aggregation pro-
cedures of subsections 2.1 and 2.2.2 to identify the HV areas

https://doi.org/10.1016/j.apenergy.2020.116010
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(a) (b) (c)

Figure 4: Identification of the substations locations: (a) the EHV area is divided into clusters, (b) large clusters are divided into smaller ones, (c) convex hull of the
aggregated clusters (in red) and final locations of the HV substations (in blue).

Algorithm 1 Partition cluster
Require: Polycluster:= original cluster, Lc := cluster’s total de-

mand, demand threshold L, µ := Divide factor (4)
1: if

⇣
Lc > L

⌘
then

2: n = ceil(L/L/µ), nx = ciel(
p

n), ny = ciel(n/nx), ñ =
nxny

3: Find the bounding box of Polycluster defined
by (Polybbox = {(x, y) : x  x  x, y  y  y})

4: Partition: obtain [Poly1
div, . . . , Polyñ

div]
5: for (i = 1, . . . , nx) do
6: ai = x + (i�1)(x�x)

nx
, ci = x + (i)(x�x)

nx
,

7: for
⇣

j = 1, . . . , ny
⌘

do

8: b j = y +
( j�1)(y�y)

ny
, d j = y +

( j)(y�y)
ny

9: Polyk
div = {(x, y) : ai  x  ci, b j  y  d j}

10: Polyk
div = Polycluster \ Polyk

div . Intersection
11: k + 1 k
12: end for
13: end for
14: Compute the demand of each small polygon: [L1

div, . . . ,
Lñ

div]
15: Save [Poly1

div, . . . , Polyñ
div], [L1

div, . . . , Lñ
div]

16: end if

and the MV/LV secondary substations. For the latter step, we
use a threshold value for the total power within each cluster
of 400 kW. This value has been chosen because it is the aver-
age power rating of the nodes of the CIGRE benchmark grid
for MV european systems [41]. The distribution of the demand
interfaced by the secondary substation and its statistics are re-
ported in Fig. 5b and Table 2. Similarly to the previous case, the
demand within each cluster is spread around the static thresh-
old.

Table 2: Statistics on HV and MV substations

Type Number Mean Demand Max Demand
HV substations 776 9.3 MW 24.7 MW
MV substations 17,844 0.41 MW 0.97 MW

Fig. 6a shows the identified locations of the substations for

the example EHV area of Fig. 3b, where 5 HV/MV and 142
MV/LV substations were identified. This process is repeated
for all EHV areas so as to estimate the locations of HV/MV and
MV/LV substations for the whole country. For Switzerland, the
model estimated 776 HV/MV nodes and 17,844 MV/LV, whose
locations are shown in Fig 6b.

2.4. Routing of medium voltage networks
2.4.1. Routing algorithm

Once the locations of the MV substations are identified, we
use a routing scheme to determine the connections and topolo-
gies of the corresponding grids. Several routing methods were
proposed in the literature, as discussed in the review paper [42].
For example, the work in [43] uses a genetic algorithm and min-
imum spanning tree, works in [44–46] apply evolutionary algo-
rithms such as simulated annealing and ant-colony. The work
in [47, 48] proposes the branch-exchange method, and the work
in [49] applies dynamic programming.

In this paper, we use the routing scheme based on the steep-
est gradient descent proposed in [50, 51] because of the faster
convergence and increased tractability compared to the above-
listed methods. The method accounts for the grid operational
constraints on voltage magnitudes and lines ampacities. It en-
forces the radiality of the final system because the MV networks
are generally operated radially (as opposed to HV systems, that
are typically meshed and operated as such). Although some
MV network might have a meshed configuration (useful, e.g.,
for networks temporary operations in case of outages), they are
usually operated radially to enable the e↵ective operations of
protection systems [52]. The method works by finding the grid
topology that minimizes the capital cost of the grid, given by the
investment cost for the power cables. In the routing scheme, we
require voltage deviations to be up to ±3% of the nominal volt-
age according to Swiss grid code [53]) and line currents below
80% of the respective cable ampacity, to reproduce a realistic
scenario where grids operate with a safety margin from physical
limits. The electrical characteristics of the lines and transformer
used for the routing procedure are given in Tables 3 and 4, re-
spectively. The rating of transformer is assumed 150 % of the

4Divide factor is chosen appropriately ( 0.5) to obtain polygons with de-
mands smaller than Lthres.
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(a) (b)

Figure 5: CDF plots of estimated electricity demands for (a) HV and (b) MV substations.

total nominal demand to reflect a planning scenario where op-
erators allow equipments to operate with a safety margin from
their maximum ratings.

The routing scheme starts from a base topology where each
substation node is connected to the 6 nearest ones (a value in-
spired from the work in [19] depicting an upper bound on the
connections to/from a node in a typical power grid). Then, the
following steps are performed:

1. run the routing scheme in Algorithm 2 by selecting high-
ampacity type-4 cables (from Table 3) for all the lines;

2. replace the type-4 cables (since they are most expensive
ones according to their ampacity) with ones with lower
ampacity according to the criterion reported in Table 5.
For example, if the maximum line current in the first-stage
routing is less than 10 % of the type-4 cable’s ampacity,
it is replaced with a type-1 cable. Once each single cable
is replaced, we perform a load flow to verify voltage and
current conditions and, if they are not satisfied, the original
cable is restored.

Table 3: Cable ratings from a commercial source.

Cable Section Resistance Reactance Capacitance Ampacity
Type [mm2] [Ohm/km] [Ohm/km] [µF/km] [A]

1 50 0.495 0.13 0.19 228
2 70 0.344 0.13 0.21 284
3 95 0.248 0.12 0.23 346
4 120 0.198 0.12 0.25 399

Table 4: Transformer rating [41].

HV MV Short-circuit Power
voltage [kV] voltage [kV] impedance [Ohms] rating [MVA]

110 20 0.016 + j1.92 25

Algorithm 2 Routing
Require: Base topology, line parameters, lines set

1: while Routing is successful (the network is connected and
feasible) do

2: Remove the most expensive line (by length) from the
lines set

3: Proceed to step 4 if connected else go to step 7
4: Compute admittance matrix, perform load flow, pro-

ceed to step 5 if
converged else go to step 7

5: Proceed to step 6 if the voltage and currents are within
bounds else

go to 7
6: Save the network, update the lines set and go to step 2
7: Keep the previous network, remove this line from the

lines set, go to
step 2.

8: end while

Table 5: Replacement scheme for lines.

Current range (pu) Cable type
0 < 0.1 1

0.1  0.2 2
0.2  0.4 3

Figure 7 shows the step-by-step routing results for an ex-
ample EHV area. Fig. 7b shows the initial routing, which is
obtained by connecting each node with the nearest 6 nodes.
Fig 7c shows an intermediate stage of the routing, where some
of the redundant lines have been removed. The final topology
is shown in Fig. 7d, where the color of the lines denotes their
ampacities. Algorithm 2 works by iteratively removing the ex-
pensive (i.e., long) lines to minimize the cost of grid routing.
The routing cost, expressed in terms of the total lines length, is
shown in Fig. 7e for an example grid. It features a decreasing
value before reaching a steady value after 300 iterations. In this

https://doi.org/10.1016/j.apenergy.2020.116010
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(a)

(b)

Figure 6: Identified HV/MV and MV/LV substations for (a) the example EHV area (5 and 142, respectively) and (b) Switzerland (776 and 17,844)
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example, the initial and final iterations correspond to 67 km and
10.5 km, respectively, of deployed lines.

2.4.2. Re-routing unsuccessful networks
In certain cases, the routing by algorithm 2 might fail. This

happens when a subset of the nodes in the given region is very
distant in space to the rest of the nodes requiring very long
cables. It either results in violations on voltage and currents
or convergence issues while solving load-flows or requires a
meshed topology with single or multiple rings to be feasible.
These networks are labelled as unsuccessful networks. To solve
this issue, we propose a re-routing procedure, where we divide
the region further using a clustering method. The steps are de-
scribed in algorithm 3. An example is shown in Fig. 8, where
on the left figure, we see a meshed network to enable it to be
routed due to current and voltage violations, whereas the right
figure shows that the network is divided into two separate radial
networks.

Algorithm 3 Re-routing
Require: Substations’ geographical locations

1: while The network is connected and feasible do
2: Split the unsuccessful networks into two areas using
k-means

clustering with locations as features
3: Place HV substations at the centroid of two areas, re-

route both
the areas using algorithm 2

4: Proceed to step 5 if network routing is successful else
go to 2

5: Save the networks.
6: end while

The final routing results for the example EHV region is
shown in Fig. 9. Statistics on the routed networks for the whole
Switzerland are listed in the Table 6. The distributions of the
nodal voltages and the lines currents are shown in Fig. 10 and
denote that design requirements are met. More discussion on
the validation of the estimated MV networks5 is presented in
Appendix B.

Table 6: Number of identified grid components.

Equipment Number of elements
HV-MV transformers 776
MV-LV transformers 17,844 x 2 (for redundancy)

MV cables and overhead lines 1342.2 km

3. PV hosting capacity and energy storage requirements for
power distribution networks

The PV hosting capacity of a distribution grid is the maxi-
mum amount of PV generation that the grid can accommodate

5Data on estimated networks and their characteristics is available on
https://github.com/DESL-EPFL/Estimated-Medium-Voltage-Distribution-
Network-Models-for-Switzerland/ [https://git.io/JkLQ8]

without violations of the its operational constraints. In this sec-
tion, we describe the PV hosting capacity problem for distribu-
tion grids and, then, how to increase it with distributed energy
storage systems [54]. Finally, we discuss the optimal deploy-
ment of PV power plants and BESSs to achieve the largest pro-
duction at the minimum cost for the whole country. We first
discuss the input data that are used in the problem formulation.

3.1. Input data
3.1.1. Capacity factor of PV production

PV capacity factors (total actual generation to the total gen-
eration at the nominal plant capacity over one year) for all loca-
tions across the country are used to compare the suitability for
hosting PV generation. Capacity factors are from the PVGIS
database [55] considering optimal panel locations (south-facing
and 38� tilt for the case of Switzerland). They are are based on
satellite information at a 3x3 km (at Nadir) resolution and are
corrected for the shading induced by topographical features on
the horizon. We query this information for the whole Switzer-
land with a resolution of 1.5x1.5 km. Figure 12a shows the dis-
tribution of the capacity factors across the country. It denotes
variable values that can vary up to a factor of 3.

3.1.2. Land-use constraints for PV generation
We evaluate land allocation to identify suitable locations for

PV power plants. We use a 100x100 m resolution land-use
map6 from the Swiss Federal O�ce for Topography, shown
in Fig. 11, reporting settlement (residential, commercial, in-
dustrial and recreational) and agricultural areas. For the area
corresponding to each MV grid, we consider that 10% of the
settlement areas can host PV generation, for a total surface of
210 km2 for the whole country. Considering this available sur-
face, the yearly capacity factors from PVGIS [55], and an av-
erage PV conversion e�ciency of 15 % in standard conditions
[56], the yearly total PV generation for Switzerland with these
assumption is of 33 TWh. Both the available area for PV de-
ployment and total generation are in-line with the estimates re-
ported in the existing literature [28–30, 57] as summarized in
Table 7. Di↵erences among the various estimations (more re-
markably for PV generation) can be explained by di↵erent in-
put data sets and methods, however they all seem to agree on
the same order of magnitude. Fig. 12b shows the distribution of
the PV installed capacity potential (solely based on land avail-
ability) across all the MV grids of the country. Its mean and
maximum values are 2 and 13.1 MW. The total PV installed ca-
pacity potential with the above assumptions is of 30 GW. It is
worth noting that larger capacity values are possible with higher
usage of available land and PV conversion e�ciency.

3.1.3. Time series of the PV generation and demand
Solving the PV hosting capacity problem does require time

series of PV generation and demand to model the loading con-
ditions of the grid. We consider a scenario with high PV gen-
eration and low demand to reproduce cases where excess PV

6
https://map.geo.admin.ch/?layers=ch.bfs.

arealstatistik-hintergrund&lang=en&topic=ech&

bgLayer=ch.swisstopo.pixelkarte-farbe
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(a) (b)

(c) (d)

(e)

Figure 7: Routing procedure:(a) example EHV area with HV and MV substations, (b) highly-connected base topology, (c) meshed grid topology at an intermediate
stage of the procedure, (d) final topology highlighting the current levels in the cables, and (e) total capital cost (expressed in km for length of cables used) as a
function of the iteration.

https://doi.org/10.1016/j.apenergy.2020.116010


Accepted for publication in Applied Energy (https://doi.org/10.1016/j.apenergy.2020.116010)

(a) (b)

Figure 8: Re-routing: (a) routed network using algorithm 1 resulting in a meshed network, (b) routed network using algorithm 2 which divides it into two radial
networks.

Figure 9: Routed MV networks for the example EHV area.

Table 7: A comparison of the PV generation potential.

Reference Area [km2] Estimated PV generation [TWh]
[28] 328 17.86
[29] 252 16.29
[57] 485 41.32
[30] 267 24 ± 9

This work 210 33

generation might cause violations of the grid constraints. In this
respect, PV generation is modelled considering uniform clear-
sky conditions over the whole power distribution network and
considering the day of the year with the largest PV generation.
We use a clear-sky model to compute the global-horizontal ir-
radiance (GHI) as a function of the location, that we denote by
n. The plane-of-array (POA) irradiance It,n (kW/m2) is deter-
mined by transposing the GHI as a function of the plant tilt and
azimuth, and time of the day. The POA irradiance is finally con-
verted to PV generation for a plant with Ppv capacity (in kW)
with the following model g(t, n, Ppv):

ppv
t,n = g(t, n, Ppv) = It,n

⇣
1 + ↵(T air

t,n + �It,n � 25)
⌘

Ppv (2)

where T air
t is the air temperature (�C), ↵ = �0.0043 and � =

0.038 are empirical parameters as in [58] for open-rack PV
plants.

Demand profiles are obtained by scaling the residential, com-
mercial and industrial demand profiles specified in the CIGRE
benchmark grid for MV systems [41], shown in Fig. 13a, for the
coe�cients extracted from the demand map computed in sub-
section 2.2. To reproduce a scenarios with dominant PV gen-
eration over the demand, we halve the nominal demand profile
to reflect a day with low electricity consumption. We assume
ideal correlation among the loads. Being the focus of the paper
on modeling the impact of PV generation on the grid hosting
capacity, modeling spatial diversity of the loads is not of spe-
cial interest. We consider voltage- and frequency-independent
loads. Figure 13b shows the PV and the load profiles consid-
ered for the PV and battery sizing.
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(a) (b)

Figure 10: CDF plots (a) nodal voltages and (b) lines currents of estimated networks shown in di↵erent colors.

Figure 11: Simplified land-use map of Switzerland.

3.2. The PV hosting capacity problem

The objective of this problem is determining the maximum
PV installed capacity that a grid can host at its nodes without
violations of grid constraints. We consider a generic distribu-
tion grid with Nbus nodes and L lines with index n 2 N =
{1, . . . ,Nbus} and l 2 L = {1, . . . , L}, respectively. The in-
stalled PV capacity at node n, that is an unknown of the prob-
lem, is denoted by Ppv

n (7). As discussed in Section 3.1.2, the
installed capacity is limited by the land availability, so we say
that Ppv

n  Ppv
n , where the right-hand-side upper-bound is de-

rived from the land availability map.

3.2.1. Grid model
In the following, bold-typeface notation refers to vectors.

Active and reactive nodal injections at the various nodes of the

7For generality, if a node cannot host PV generation, we can add in the
following formulation a constraint of the kind Ppv

n = 0.

grid are collected in vectors pt,qt. They are given by the dif-
ference between the nodal PV generation ppv

t ,q
pv
t and demand

pload
t ,qload

t , when available. We assume that PV plants operate
at unitary power factor, so qpv

t = 0, as typical for small/medium
size PV plants. PV generation is computed by applying the
model g(·) in (2). Vectors vt and it collect the magnitudes of the
nodal voltage and line current, respectively. These quantities,
and the corresponding complex power at the grid connection
point, are modelled as linear functions of the nodal injections
and the voltage at the slack bus with a model based on sen-
sitivity coe�cients and described in 3.2.1. In the following,
we denote the voltage and current linear model with the gen-
eral notation vt = v(pt,qt, ṽ0) and it = c(pt,qt, ṽ0), where ṽ0
is the set of nodal voltage phasors for power-flow linearization.
We model the grid with sensitivity coe�cients which express
the linearized dependency of nodal voltages, lines currents and
grid losses as function of the nodal active and reactive power
injections. The linear grid models for voltage, current and total
grid losses are

vt = v(ṽ0,pt,qt) = Av
t

"
pt
qt

#
+ bv

t (3)

it = c(ṽ0,pt,qt) = Ai
t

"
pt
qt

#
+ bi

t (4)
"
pgcp

t
qgcp

t

#
= s(pt,qt, s̃0) = Agcp

t

"
pt
qt

#
+ bgcp

t (5)

where A and b are the linear mapping parameters obtained us-
ing the method in [59, 60]. They are iteratively updated with
newly sized battery and PV injections. An accuracy analysis
of the modeled linear power flow is included in Appendix A.
The symbols pgcp

t , q
gcp
t denotes the active and reactive power

at the GCP. The nodal voltage magnitudes and line currents
should be within allowed voltage limits, denoted by v, v, and
respect cable ampacities i. Similarly, the apparent power at the
substation transformer is denoted by the model s(pt,qt, s̃0) and
should be less than substation transformer rating S , where s̃0 is
the operating complex apparent power used for the power-flow
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(a) (b)

Figure 12: Distribution of (a) capacity factor and (b) maximum PV capacity per MV node due to land constraint.

(a) (b)

Figure 13: Demand and PV scenarios: (a) standard load profiles for di↵erent sector from [41], (b) scenario considered for the PV and battery sizing problem.

linearization.
The problem consists in maximizing the installed capacity of

PV generation while subject to grid constraints. To foster the
deployment of the PV plants in nodes with the highest irradi-
ance availability, the installed capacity is weighted by the local
capacity factor �n (8). The problem formulation is:

maximize
{Ppv

n 2R+,n2N}

8>><
>>:
X

n2N
�nPpv

n

9>>=
>>; (6a)

subject to nodal injections model and grid constraints

pt = ppv
t � pload

t t 2 T (6b)

qt = ppv
t � qload

t t 2 T (6c)
v  v(ṽ0,pt,qt)  v t 2 T (6d)

0  c(ṽ0,pt,qt)  i t 2 T , (6e)

0  s(pt,qt, s̃0)  S t 2 T , (6f)

8We include the capacity factor because, even if derived from satellite esti-
mations with coarser resolution that the grid nodes, the topographical shading
is at a higher resolution and could impact on the suitability of certain nodes.

and PV generation model and land-availability constraint Ppv
n :

ppv
n,t = g(t, n, Ppv

n ) t 2 T , n 2 N (6g)

Ppv
n  Ppv

n n 2 N . (6h)

3.3. Increasing PV hosting capacity with BESSs
3.3.1. Problem formulation

The objective of this problem is to determine the optimal lo-
cation of PV plants to host a target level of total PV genera-
tion capacity, that we denote by P?. However, values of P?
above the grid’s PV hosting capacity cannot be accommodated
because they would lead to violations of grid constraints. For
this reason, this problem also determines an optimal configu-
ration of BESSs (location, converter power ratings, and energy
capacities) to relieve grid constraints and enabling the further
integration of PV generation in the grid. The results of this pro-
cess are discussed at the end of this section.

It is worth highlighting that, even if we consider BESSs, the
formulation can be extended to other forms of energy storage
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systems or other resources capable of providing grid support,
like flexible demand [61, 62]. It is also worth highlighting the
parallel with PV self-consumption strategies, which can indi-
rectly mitigate the impact of excess PV generation on grid con-
straints thanks to promoting the direct consumption of locally
generated electricity, see e.g. [63, 64]. PV self-consumption
is typically provided on a best-e↵ort basis by end consumers
and is typically unaware of global grid conditions, thus with-
out o↵ering reliable performance guarantees. Compared to PV
self-consumption, we provide robust guarantees on grid control
performance and optimized energy storage requirements con-
sidering the whole grid and not a single consumer.

BESSs model. BESSs’ active power is denoted by pbess
n,t , and

reactive by qbess
n,t . We model the evolution of the BESS state-of-

energy (SOE) with

SOEn,t = SOEn,t�1 � pbess
n,t �t, (7)

where �t is the sampling time. Charging and discharging ef-
ficiency is accounted for by integrating the BESS equivalent
resistance in the load flow problem as proposed in [65]. If load
flow equations are linearized, this modeling choice retains the
convexity of the problem without requiring the use of additional
variables as, for example, in [66]. Since battery sizes are the
decision variables, the optimization problem is solved multi-
ple times taking account of the updated equivalent resistances
in proportion to their converter ratings. To implement a safety
margin from zero-SOE and full charge, we implement the fol-
lowing constraint

aEbess
n  SOEn,t  (1 � a)Ebess

n (8)

where 0  a  0.5 is a design parameter and Ebess
n is the BESS

energy capacity. BESS injections should respect the capability
curve of its four quadrant power converter. This reads as:

0  (pbess
n,t )2 + (qbess

n,t )2  (Pbess
n )2. (9)

Capital investment for BESSs and PV plants. The capital in-
vestment for installing a PV plant with generation capacity Ppv,
and a BESS with energy capacity Eb

n and power rating Pb
n at

node n is:

J
⇣
Ppv

n , Pbess
n , E

bess
n

⌘
= Cpv

n Ppv
n + CPPbess

n + CEEbess
n , (10)

where Cpv, CP, and CE are the unitary costs for PV, power con-
verter rating, and energy capacity, respectively. Costs are re-
ported in Table 8. They are derived from current market figures.

Formulation of the decision problem. The decision variables of
the problem are the installed PV capacity, the BESS power rat-
ing and the BESS energy capacity at all the nodes of the grid,
which we collect in the set � =

n
Ppv

n , Pbess
n , Ebess

n 2 R+,8n 2 N
o
.

Table 8: Costs of PV and BESSs.

Component Unit Value
Turn-key PV system (Cpv) USD($)/kWp 1020
BESS converter rating (CP) USD($)/kVA 200
BESS energy capacity (CE) USD($)/kWh 300

Without losing generality, nodes that cannot host PV genera-
tion or BESS can be excluded by properly subsetting the nodes
index. The problem consists in locating and sizing BESS to ac-
commodate a target level P? of installed PV generation capac-
ity while minimizing the total capital investment (10) for all the
nodes of the grid. The BESSs’ optimal location is determined
by the battery nodal injections that are di↵erent than zeros at
certain nodes. Similarly to before, to favour the locations with
large PV capacity factors, we weight the installed PV capacity
at each node with the factor �/�n, where � is the average among
all the capacity factors �n, n 2 N in the network. Finally, the
problem is:

minimize
�

8>><
>>:
X

n2N
J
⇣
�/�n · Ppv

n , Pbess
n , E

bess
n

⌘
9>>=
>>; (11a)

subject to nodal injections (now with BESSs demand too) and
grid constraints

pt = ppv
t � pload

t � pbess
t t 2 T (11b)

qt = ppv
t � qload

t � qbess
t t 2 T (11c)

(6d) � (6f), (11d)

BESS model and constraints

SOEn,t = SOEn,t�1 � pbess
n,t �t t 2 T , n 2 N (11e)

0  (pbess
n,t )2 + (qbess

n,t )2  (Pbess
n )2 t 2 T , n 2 N (11f)

aEbess
n  SOEn,t  (1 � a)Ebess

n t 2 T , n 2 N (11g)

and PV model and target PV capacity P? to install in the grid:

(6g) � (6h) (11h)
X

n2N
Ppv

n = P?. (11i)

3.3.2. Results
For each estimated MV grid, first, we solve the PV prob-

lem (6) to obtain the PV hosting capacity, then, we solve the
BESS sizing problem (11) by varying P? in (11i) from 25% to
300% (with increments of 25%) of the grid PV hosting capac-
ity. It should be noted that both the problems (6) and (11) are
solved multiple times for correcting the grid linearization (by
updating the injections of newly sized PV and battery installa-
tions) and updating battery equivalent resistances (for the bat-
tery loss model as previously mentioned). With this procedure,
we determine the BESSs requirements for PV configurations
below (25-100%) and above (125-300%) the grid hosting ca-
pacity. The results of this process for are shown in Fig. 14 and
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are now discussed. Figures 14a and 14b show the cost curves
for 10 randomly chosen distribution networks, whereas Figures
14c and 14d show the distribution along the grids with sym-
metric quantiles. Figure 14a shows the total investment for PV
systems and BESSs as a function of the installed PV genera-
tion capacity. We can observe two elements. Networks reach a
di↵erent level of maximum PV installed capacity. This is due
to the di↵erent values of land availability. Second, the total
investment grows at two di↵erent rates because the investment,
below the hosting capacity, is given by PV panels only, whereas
above it, by BESSs too. Figure 14b shows the marginal cost of
increasing the level of installed PV generation capacity. We
define the marginal cost of each grid as the total cost of the PV-
BESS system over the total PV yearly production accounting
for the capacity factor as:

Marginal cost =
X

n2N

J
⇣
bPpv

n ,bPbess
n , bEbess

n

⌘

bPpv
n · 365 · 24 · �n

, (12)

where bPpv
n ,bPbess

n , bEbess
n denote the solution of problem (11). It

can be seen from Fig. 14a and 14b that, below the hosting ca-
pacity, the marginal cost is constant because it corresponds to
the unitary cost of PV, whereas above, it increases because pro-
gressively larger BESSs are required. Figure 14c and 14d shows
the density plot of the cost curves derived for all estimated MV
networks in Switzerland. They show the distribution of the to-
tal and marginal costs among di↵erent networks. As it can be
seen in Fig. 14a and 14b, di↵erent networks have di↵erent PV
hosting capacities, therefore the marginal costs of the various
systems have di↵erent patterns.

3.4. Optimal allocation of PV and BESSs

In the former subsection, we have discussed a method to de-
termine the optimal deployment of PV installations and BESSs
within a network to accommodate a target level of installed PV
capacity. We have applied it to all identified grids of Section 2
and derived, for each of them, marginal costs for installing in-
creasing levels of installed PV capacity. The estimated marginal
costs are key results as they allow us to compare the costs of in-
stalling PV generation in various networks across the country,
and they will be the fundamental input of the problem discussed
in this section. The objective of this problem is to determine
the installed PV capacity in each network in order to achieve
a countrywide objective for total PV generation at the lowest
capital cost.

We denote the curves of Fig. 14b with the function fm(P?m),
where m 2 M = {1, . . . ,M} is the index for the identified MV
networks and P?m is the installed capacity in grid m. We ap-
proximate the curves fm with a piece-wise linear function. The
domain of fm is [P?m, P

?

m], derived from Fig. 14b. The problem
consists in finding the variables P?1 , . . . , P

?
M at the minimum

total cost and such that the total installed capacity equals the

countrywide PV installation target Ptarget. The problem is:

minimize
{P?m2R+,m2M}

8>><
>>:
X

m2M
Ppv

m fm(Ppv
m )

9>>=
>>; (13a)

subject to the domains of the variables and the PV installation
target:

P?m  P?m  P
?

m m 2M (13b)
X

m2M
P?m = Ptarget. (13c)

The results are discussed in the next section.

4. Results and Discussion

4.1. Case study
In the previous sections, we have presented a modeling

toolchain that determines an economically optimal deployment
of PV plants and BESSs to achieve a target level of installed
PV generation while accounting for the capacity factor spatial
distribution, grids constraints and how they can be relieved by
BESSs when the PV generation capacity exceeds the grid’s PV
hosting capacity. It is worth highlighting that the problem’s
essence is not only about achieving an optimal deployment of
PV generation based on its countrywide potential but also ex-
tending with distributed energy storage the PV hosting capac-
ity of grids with large PV generation potential if this leads to
more economically convenient configurations. For example, as
shown in this section, it is more convenient to invest in BESSs
to extend the hosting capacity of a grid with a large generation
potential and installing here additional PV generation rather
than in grids with lower generation potential.

In this section, we compare this approach (that we call Case
1) against the case where the same level of installed PV gen-
eration capacity is deployed uniformly in the distribution grids
(Case 0). For an illustrative comparison between Case 0 and
1, we refer to Fig. 14d: for a given value of total PV genera-
tion capacity, Case 0 involves selecting, for each network, an
installed PV generation capacity (x-axis) that is proportional to
the grid area and regardless of its cost (y-axis). Case 1 involves
placing PV generation starting from the grid with the lowest
cost (y-axis), and saturating its potential (sweeping the x-axis)
before moving to the second cheapest grid.

4.2. Deployment of PV plants
Figure 15 shows the distribution of installed PV generation

capacity across Switzerland for increasing (from top to bottom)
levels of total installed capacity and for Case 0 (left column)
and Case 1 (right). The di↵erence between the two deployment
policies is evident by comparing the plots in the first row: in
the left plot (Case 0), PV plants are installed uniformly in the
grids,9 whereas in the right plot (Case 1) PV is installed priori-
tizing regions with higher irradiance availability, which appear
to be Ticino, Leman and Neuchatel regions, and west Valais.

9Non-uniform spatial distribution over the country of PV generation is be-
cause grids are not uniformly distributed.
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(a) (b)

(c) (d)

Figure 14: Investments to achieve a target level of installed PV generation capacity: (a, c) total cost, and (b, d) marginal cost. Top: for randomly chosen 10 MV
networks, bottom: for all estimated MV networks in Switzerland (distribution with symmetric quantiles).

For increasing values of installed PV capacity (second and
third rows of Fig. 15), it can be observed that Case 0 and Case 1
feature increasingly similar geographical distribution patterns.
This is due to land-use limitations, and the activation of the
associated constraint in (6h). In other words, once Case 1 satu-
rates the available locations for PV deployment in regions with
high irradiance potential, it starts installing PV generation in
second-choice grids. The distribution of the BESS follows the
same pattern as of PV.

4.3. Deployment of PV plants and BESSs for Case 0 and Case
1

Table 9 shows the PV installed capacity, the yearly produc-
tion, the BESS power rating and energy capacity, and the total
cost (i.e., investments for PV plants and BESSs) for 10 scenar-
ios (A-J) of PV generation deployment for Case 0 and Case 1.
Scenarios A, B, C to J correspond to allocating PV generation
in 5, 10, 20 to 90% (with increments of 10%), respectively, of
the available surface. We remind that the available surface for
PV is 10% of the settlement areas, as discussed in section 3.1.2.
The energy transition scenario for Switzerland reported in [67]
estimates a yearly PV production potential from roof-top PV
around 25 TWh, that corresponds to our scenarios H-J.

From Table 9 we can make the following observations.

• Case 1/Scenario A achieves a 0.21 TWh increase in yearly
production compared to the same scenario of Case 0
thanks to installing PV generation in distribution grids
with larger PV generation potential first. For increasing
values of installed capacity (scenarios from B to J), the
yearly production of the two cases converges to the same
values due to land-use limitations, as discussed in 4.2;

• Case 0 requires BESSs starting from Scenario C, whereas
Case 1 has mild needs in Scenario B already. This denotes
that it is more cost e↵ective to invest in BESS to increase
the hosting capacity of high PV-generation-potential grids
rather than connecting that same PV capacity in other grids
with less PV generation potential.

• Connecting PV generation above Scenario C in Case 0 re-
quires progressively larger values of energy storage capac-
ity and power rating. For example, doubling its installed
capacity (from 6.85 to 13.70 GW) requires nearly 40 times
the energy storage capacity (from 0.14 to 5.73 GWh). It is
worth noting that the needs for BESSs increases sharper
for Case 0 than Case 1. This is because the latter problem
optimizes the locations of BESSs and PV across all the
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(a) (b)

(c) (d)

(e) (f)

Figure 15: Installed PV generation capacity (in MW) across Switzerland for scenario A in (a) and (b), scenario B in (c) and (d), and scenario C in (e) and (f), for
Case 0 and Case 1, respectively. Scenarios refer to the installed capacity of PV generation and are defined in Table 9.

grids attaining a minimum costs, whereas Case 0 scales
PV capacity regardless of grid properties and irradiance
potential. Costs are discussed next.

4.4. Cost comparison
Figure 16 compares the marginal cost (i.e., total cost divided

by the PV yearly production for the respective scenarios) of
the two cases using results from Table 9. Case 1 (optimal
allocation) always achieves a lower unitary cost compared to
Case 0. This is because the optimal allocation problem places
the PV plants at locations with the higher irradiance potential
first, whereas Case 0 (uniform PV allocation) places the PV
plants proportionally to the available area. This shows the ef-
fectiveness of the optimal allocation algorithm. However, for

higher values of installed PV generation capacity, the costs con-
verge to the same value due to land-use limitations in most PV-
favourable grids.

Fig. 17a shows the BESS energy capacity and power rating
requirements for the optimal case as a function of the installed
PV generation capacity using the results from Table 9. The en-
ergy storage requirements are mild, before increasing sharply
after 14 GW(10). It can be noted that mitigating with BESSs
the impact of excess PV generation on distribution grids is
an energy-intensive application, with power-rating-to-energy-
capacity ratios (i.e., C-rates) around 1/5. As current BESSs
technologies can safely operate up to 2-3C, the spare power

10This value of hosting capacity is in-line with the countrywide hosting ca-
pacity obtained by solving the problem in Section 3.2.
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Table 9: Deployment of PV and BESS in the two cases.

Scenario
PV installed PV production BESS Power BESS Capacity Total cost

capacity (TWh/y) (GW) (GWh) Billions $
(GWp) Case 0 Case 1 Case 0 Case 1 Case 0 Case 1 Case 0 Case 1

A 1.71 1.90 2.11 0.00 0.00 0.00 0.00 1.76 1.77
B 3.43 3.81 4.09 0.00 0.00 0.00 0.01 3.53 3.53
C 6.85 7.62 7.87 0.03 0.01 0.14 0.01 7.11 7.07
D 10.28 11.42 11.46 0.46 0.04 1.31 0.05 11.07 10.61
E 13.70 15.23 15.25 1.74 0.51 5.73 0.68 16.18 14.42
F 17.02 18.92 18.99 3.64 3.08 14.74 7.88 22.68 20.51
G 20.11 22.36 22.43 5.87 5.67 26.83 21.26 29.94 28.23
H 22.89 25.44 25.46 8.10 7.94 39.90 36.20 37.17 36.03
I 25.42 28.24 28.25 10.18 10.08 53.41 51.00 44.25 43.50
J 27.57 30.61 30.61 12.07 12.00 65.87 65.04 50.57 50.31

Figure 16: Cost per TWh of PV energy production for the two cases.

rating can be conveniently used to provide additional ancillary
services, such as primary frequency control and grid synchro-
nization services, that are mostly power-intensive [68]. Fig. 17b
shows the corresponding system cost and cost breakdown and
shows that the cost of the PV panels is largely dominant.

5. Conclusions

PV generation will be key in achieving the energy transition
targets, in Switzerland and other countries. As PV plants are
connected to the power distribution system, it is important to
consider the generation hosting capacity of existing distribution
grids, which is typically limited due to grid operators’ require-
ments to keep voltage levels within statutory limits, respect the
cable ampacities and rating of the substation transformer.

The main obstacle to analyzing the PV hosting capacity of
existing distribution grids is that their topology and line charac-
teristics are confidential information owned by di↵erent DSOs.
For this reason, we have first developed a method to estimate
likely distribution grids starting from publicly available georef-
erenced data. Relying on the fact that existing distribution grids
interface electrical demand, we use the countrywide geograph-
ical distribution of the electrical demand to infer the HV and
MV electrical nodes’ locations and connect them with a routing
procedure from the existing literature. We then present a com-
putationally tractable method based on a linearized OPF prob-

lem to compute the PV hosting capacity of distribution grids,
including how to host PV generation beyond prescribed lim-
its with adequately located and sized distributed energy storage
systems for relieving grid constraints violations.

Finally, we propose a specific planning problem that deter-
mines a cost-e�cient allocation of PV power across the whole
country, accounting for the technical limitations of the distri-
bution grids (including adding energy storage, if conducive to
lower system costs) and the distributed potential of PV gener-
ation, modeled with highly resolved PV capacity factors from
the PVGIS database. We also consider land-use constraints to
identify the sites where it is possible to install PV generation.
The ”cost-e�ciency” notion for installing PV and energy stor-
age systems includes two factors. First, cost e�ciency is higher
when installing PV plants where their capacity factor is larger.
Second, it may be more cost-e�cient to invest in distributed
energy storage to extend the PV hosting capacity of highly in-
sulated distribution grids rather than installing PV plants where
their capacity factor is low.

The impact of this paper is twofold. On the one hand, it pro-
vides to distribution system operator a mathematically tractable
and interpretable method to assess the PV generation hosting
capacity of distribution grids, including how to cost optimally
extend it with energy storage systems. On the other hand, de-
veloped methods provide actionable indications to national pol-
icymakers on the level of PV generation that a country can host
and, on its techno-economical optimal deployment.
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Appendix A. Verification of optimal power flow results

We compare the voltage and current magnitudes computed
by the linearized OPF model of Sec. 3.2 and 3.3 against ground-
truth values from an AC load flow. The analysis is done for one
of the synthetically generated network for which, the topology
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(a) (b)

Figure 17: (a) BESS cost and size: (a) BESSs power rating and energy capacity and (b) system cost breakdown for Case 1 for di↵erent levels of installed PV
generation capacity.

(with line parameters) and the nominal injections are shown
in Fig. A.18 and Table A.10 respectively. As mentioned in
Sec 3.3.2, the OPFs are solved by successively linearizing the
model accounting for the updated BESS and PV injections to
correct the linearization error until the cost of the problem con-
verges. Fig. A.19a and Fig. A.19b show the power and en-
ergy ratings and the respective costs determined by the OPF of
Sec. 3.3, respectively. Results settle in 7 iterations. After con-
vergence is reached, we check the accuracy of the linear grid
model against non-linear AC power flow using the BESS and
PV injections from OPF problem. Fig. A.20 shows the CDF
plots of error of the nodal voltage magnitude and currents mod-
eled by the linear OPF and the AC power flow. Table A.11
shows the maximum, absolute mean and mean error for the
voltage and current modeling. They show that the voltage and
current modeling errors are below 0.5 % and 1.75 % respec-
tively. This proves that the voltage and current constraints mod-
eling using sensitivity-based linear grid model is close to the
non-linear AC power flow.
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Figure A.18: One of synthetically generated network as test case for the verifi-
cation of linear grid model.

Table A.10: Nominal Load and PV per node

Node Load [MW] PV [MWp] Node Load [MW] PV [MWp]
N1 - - N14 0.17 -
N2 - 1.05 N15 0.18 0.35
N3 0.22 - N16 0.19 -
N4 0.15 - N17 0.17 0.44
N5 0.14 - N18 0.20 -
N6 0.21 1.75 N19 0.21 -
N7 0.17 1.90 N20 0.22 -
N8 0.19 0.87 N21 0.16 -
N9 0.20 1.16 N22 0.18 1.00
N10 0.19 0.70 N23 0.26 1.81
N11 0.14 - N24 0.23 1.17
N12 0.17 - N25 0.02 -
N13 0.17 -

Table A.11: Accuracy of the linear power flow.

Max SD Mean
Nodal voltage error 4.2e-3 1.8e-3 1.1e-3
Lines currents error 1.75e-2 4.1e-3 4.8e-4

Appendix B. Validation of synthetically generated MV net-
works

We compare two estimated grids from our model with a real
distribution network in Aigle, Switzerland, for which it was
possible to access the topology and grid data. It is a three-phase
21 kV/6 MVA, a 55-bus network. The two synthetically gen-
erated networks are picked from a region near Aigle. The val-
idation refers to comparing the “loadability” of the network,
namely evaluating the CDFs of the voltage and line current
magnitudes at di↵erent load conditions. For the comparison,
we use the load profiles shown in Fig. 13a. Fig. B.21 shows the
CDFs of the voltage and current magnitudes of the original and
estimated networks. The maximum, mean and the minimum
values are reported in the Table B.12. The numerical compari-
son and the CDFs show a good match among the networks. In
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(a) (b)

Figure A.19: Plots showing convergence of the BESS sizes and the objective by correcting the linear power flow coe�cients with newest battery injections from
previous iteration: (a) BESS power and energy size and (b) Cost of the PV-BESS system.

(a) (b)

Figure A.20: CDF plots (a) nodal voltages error and (b) branch current error.

particular, it emerges that the voltage and current magnitudes
of the estimated networks fall in the same ranges as the one of
the real grid.

Table B.12: Comparison of actual and estimated networks.

Networks Nodal voltage magnitudes Lines current magnitudes
Max SD Mean Max SD Mean

Actual 1.0006 0.0025 0.9978 0.3974 0.0420 0.0237
Estimated 1.0000 0.0013 0.9985 0.3181 0.0570 0.0593
case 1
Estimated 1.0000 0.0022 0.9970 0.4346 0.0782 0.0732
case 2
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