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Abstract—In this paper, we propose and experimentally vali-
date a scheduling and control framework for distributed energy
resources (DERs) that achieves to track a day-ahead dispatch
plan of a distribution network hosting controllable and stochastic
heterogeneous resources while respecting the local grid con-
straints on nodal voltages and lines ampacities. The framework
consists of two algorithmic layers. In the first one (day-ahead
scheduling), we determine an aggregated dispatch plan. In the
second layer (real-time control), a distributed model predictive
control (MPC) determines the active and reactive power set-
points of the DERs so that their aggregated contribution tracks
the dispatch plan while obeying to DERs operational constraints
as well as the grid’s ones. The proposed framework is exper-
imentally validated on a real-scale microgrid that reproduces
the network specifications of the CIGRE microgrid benchmark
system.

Index Terms—Model predictive control, distributed control,
ADMM, dispatch, power distribution networks

ACRONYMS

ADMM Alternating Direction Method of Multipliers
BESS Battery Energy Storage System
DERs Distributed Energy Resources
DSO Distribution System Operator
GCP Grid Connection Point
GHI Global Horizontal Irradiance
GPS Global Positioning System
MAE Maximum Absolute Error
MPC Model Predictive Control
OPF Optimal Power Flow
PMU Phasor Measurement Units
PV PhotoVoltaics
RMSE Root Mean Square Error
SC Sensitivity Coefficient
SCADA Supervisory Control and Data Acquisition
SD Standard Deviation
SOC State-of-Charge
TSO Transmission System Operator
UDP User Datagram Protocol
UTC Universal Time Coordinated.

I. INTRODUCTION

Controlling heterogeneous and stochastic energy resources
connected to medium and low voltage power grids is crucial

⇤Corresponding author: rahul.gupta@epfl.ch.

to displace centralized electricity generation in favor of re-
newables. This change of paradigm inputs the planning and
operational practices of both distribution system operators
(DSOs) and transmission system operators (TSOs). Indeed,
DSOs may face significant issues associated with grid rein-
forcements and capability of being dispatched, while TSOs
will experience increasing needs for allocating and deploying
regulating power.

Day-ahead and intra-day scheduling of distributed energy
resources (DERs) and, in general, heterogeneous DERs has
been advocated in the literature as a way to minimize the
effect of uncertainties. It consists in determining an average
power trajectory (dispatch plan) at a certain resolution before
operations that is then followed during real-time operation.
Different scheduling problems have been proposed. E.g.,
works in [1]–[4] aim at minimizing power imbalances and
in [5] at maximizing economic benefit. During operation, the
realized power profile deviates from the dispatch plan because
of forecast errors causing issues such as: power imbalance,
lines/transformers congestion, voltage outside bounds etc. To
tackle these issues, several works proposed real-time controls
and energy management schemes [6]–[9] with different ob-
jectives. The work in [6] proposed a real-time control for
voltage regulation, in [7] for congestion management, in [8]
for energy management and dispatch tracking, and in [9] for
frequency regulation. An extensive literature review on micro-
grids controls and energy management schemes is presented
in [10].

In this work, we develop and experimentally validate a
framework for scheduling and real-time control of heteroge-
neous DERs while accounting for local grid constraints. In
the scheduling phase on the day before operations, a stochastic
optimization problem computes an aggregated dispatch plan at
the grid connection point (GCP), accounting for the uncertain-
ties of DERs and demand with scenarios, and constraints of
the grid and DERs with models. In the real-time phase, a grid-
aware model predictive control (MPC) computes the active
and reactive power set-points of the heterogeneous DERs so
that their aggregated contribution tracks the dispatch plan at
the GCP while obeying to their constraints and those of the
grid. The MPC problem leverages a distributed formulation
to achieve a privacy-preserving and scalable configuration. It
is solved with the alternating direction method of multipliers
(ADMM), in which each DER solves its own constrained
optimization problem, and an aggregator performs an optimal
power flow (OPF) to enforce grid constraints and track the
dispatch plan, considering grid losses. We model the grid with
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a linearized model based on the sensitivity coefficients [11],
[12] to retain the convexity and tractability of the underlying
optimization problem and achieve the high computational
performance necessary for the hard real-time control.

The proposed framework is experimentally validated in a
grid-connected microgrid that reproduces the CIGRE bench-
mark system for microgrids [13]. It connects stochastic de-
mand, a battery energy storage system (BESS) and two
curtailable PV power plants and is equipped with a pha-
sor measurement units (PMU)-based monitoring system. We
perform experiments for two distinct days characterized by
different irradiance patterns, including real-life forecasters,
also described in the paper.

The main contributions of this paper compared to the
existing literature are the formulation of a generic and
computationally-efficient scheduling and control framework to
dispatch heterogeneous resources while accounting for grid
constraints and its experimental validation in a real-life setup.
With respect to previous efforts of experimental validation in
[1], [4], [8], [9] and MPC-based control in [14]–[18], we report
the first experimental validation of a rigorous distributed MPC-
based framework on a real-scale microgrid accounting for the
grid constraints.

The paper is organized as follows. Section II states the
problem, Section III describes the day-ahead problem, Sec-
tion IV presents the real-time controller, Section V presents
the experimental setup, Section VI presents the experimental
results and Section VII summarizes the outcomes and findings
of the paper.

II. PROBLEM STATEMENT

We consider a distribution grid interfacing controllable
and uncontrollable DERs. The grid is dispatched at its GCP
according to a pre-determined dispatch plan. The dispatch
action is achieved by coordinating the DERs operations while
respecting their own constraints along with those of the grid.
We refer to the following two-stage mechanism.
• Day-ahead scheduling: the operator computes a dispatch

plan for the next day based on the forecast of the stochastic
generation and demand, the status of controllable resources,
and local grid constraints. The dispatch plan not only reflects
the point-predictions of the stochastic quantities but also
ensures that DERs have a suitable level of flexibility to track
the dispatch plan in real-time. We assume that the dispatch
plan has a 30-sec resolution and is computed at 23.00 UTC
the day before operations. This phase is detailed in Sec. III.

• Real-time operations: DERs are controlled in real-time, so
to compensate for power mismatches at the GCP between
the realization and dispatch plan. The control problem is
formulated as a distributed MPC. It accounts for future
uncertainties along the optimization horizon, and DERs’
and grid’s constraints. The distributed formulation decouples
the DERs’ and the grid’s problems, which can be solved
iteratively until convergence. Real-time operations start at
00.00 UTC and end at 23.59.59 UTC. The formulation is
detailed in Sec. IV.
In both stages, we model the grid with sensitivity coeffi-

cients (SCs), which express the nodal voltages, line currents,

and grid losses as a linearized function of the nodal complex
power injections. Let us consider a generic distribution grid
with nb nodes and nl branches. Vectors v 2 R(nb�1) and i 2
Rnl represent direct sequence nodal voltages magnitudes and
branch currents magnitudes, respectively, and p 2 R(nb�1)

and q 2 R(nb�1) the three-phase total nodal active and
reactive controllable injections for all nodes except the slack
node. Scalars pl, ql 2 R are the total active and reactive
transmission losses as seen at the GCP. The linearized nodal
voltages, branch currents and the losses seen at the GCP are1:

vt = Av
t

⇥
pt qt

⇤T
+ bv

t
(1)

it = Ai
t

⇥
pt qt

⇤T
+ bi

t
(2)

⇥
pl
t
ql
t

⇤T
= Al

t

⇥
pt qt
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t
, (3)

where Av
t

2 R(nb�1)⇥2(nb�1), Ai
t
2 Rnl⇥2(nb�1), Al

t
2

R2⇥2(nb�1), bv
t

2 R(nb�1), bi
t
2 Rnl , and bl

t
2 R2 are

parameters for linearizations determined by SCs for time index
t. They are determined with the method in [11] by solving a
system of linear equations (that admits a single solution, as
proven in [19]) as a function of the grid’s admittance matrix
and the knowledge of the system state. In the day-ahead phase,
the SCs along the whole scheduling horizon are calculated
using point predictions of the nodal injections. In the real-
time phase, the SCs are updated at each control step using the
most recent information on the grid state.

III. DAY-AHEAD DISPATCH

A. Design requirements of the dispatch plan

The objective of the day-ahead scheduling is to compute
the dispatch plan, mainly the active power trajectory that the
targeted distribution network should follow at its GCP during
operations. The design requirements of the dispatch plan are:

• stochastic variations from the dispatch plan due to dis-
tributed generation and demand should be compensated
by the controllable resources while respecting their oper-
ational constraints;

• the regulation made by the controllable resources does
not violate grid constraints;

• the power factor at the GCP should be near unity.
The dispatch plan is computed with a stochastic optimization
framework, where the stochastic injections of distributed gen-
eration and demand are modelled through forecast scenarios.
Grid constraints are modelled with the linearized grid model
discussed in the previous section. Operational constraints of
the controllable resources are modelled accounting for the
PQ capability of their power converters and state-of-energy
constraints.

B. Computation of the dispatch plan

Let r = 1, . . . , R be the index of the controllable resources
that can participate to the dispatch, T = [t0, t0+1 . . . , tN ] the
set of time indices of the scheduling horizon delimited by t0

1We assume the following hypothesis i) the system is in steady-state and
can be modeled by phasors, which is able to track small power-dynamics, ii)
the nodes are PQ nodes, and the nodal injections are not voltage-dependent.
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and tN . The set ⌦ collects the scenario ! for stochastic uncon-
trollable generation and demand. The active and reactive nodal
power injections of controllable and uncontrollable resources
for scenario ! are denoted by p!

t
,q!

t
and punc,!

t
, qunc,!

t

respectively, where those last are from scenario forecasts.
The nodal injections of the controllable resources are the
decision variables of the problem and are collected in the
vector x!

r,t
= [p!

r,t
, q!

r,t
]. Let s!0,t the complex power at the

slack bus for time t and scenario !. Let the complex number
sdisp
t

= pdisp
t

+ jqdisp
t

the decision variable for the dispatch plan
for time t, where pdisp

t
and qdisp

t
refer to the active and reactive

power respectively.
The main idea behind the proposed formulation is to de-

termine a dispatch plan that can be tracked for any of the
forecast scenarios. The problem consists in determining the
injections of the controllable resources so as to minimize the
deviation between the dispatch plan sdisp and slack power for
all the scenarios s!0 ,! 2 ⌦. Moreover, the cost function
includes a resource-specific term fD

r
(xr,t) that reflects the

willingness of each controllable resource to provide regulating
power (specific cost functions are described in Sec V-B1) and
a coefficient �r to weight them. Both the cost function and the
coefficient can be designed by the modeller, for instance, based
on a combination of resource’s operating conditions (such as
minimize wear and tear, power ramping, power variations etc.)
or the monetary cost associated to it’s operation. The cost
function should be convex in order to keep the convexity of
the overall problem formulation. The impact of the term �r is
investigated in the Appendix. The problem that we solve is:

ŝdisp = arg min
s

disp

X

!2⌦

X

t2T

n
(s!0,t � sdisp

t
)2 +

RX

r=1

�rf
D

r
(x!

r,t
)
o

(4a)

subject to the power flow at the GCP as a function of the nodal
injections and losses

p!0,t =
RX

r=1

p!
r,t

+ 1Tpunc,!
t

+ pl,!
t

8t 2 T ,! 2 ⌦, (4b)

q!0,t =
RX

r=1

q!
r,t

+ 1Tqunc,!
t

+ ql,!
t

8t 2 T ,! 2 ⌦, (4c)

⇥
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⇤T
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t
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t
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t

⇤T
+ bl,!

t
8t 2 T ,! 2 ⌦, (4d)

power factor constraint at the GCP imposed by cos(✓)min

|p!0,t|/||s!0,t|| � cos(✓)min 8t 2 T ,! 2 ⌦, (4e)

linear voltage and current constraints (vmin, vmax are voltage
limits, and imax lines’ ampacities)

vmin  Av,!
t

⇥
p!

t
q!

t

⇤T
+ bv,!

t
 vmax 8t 2 T ,! 2 ⌦, (4f)

0  Ai,!
t

⇥
p!

t
q!

t

⇤T
+ bi,!

t
 imax 8t 2 T ,! 2 ⌦, (4g)

and constraints for all controllable resources

�D

r
(x!

r,t
)  0 8t 2 T ,! 2 ⌦, r = 1, . . . , R. (4h)

Once the problem in (4) is solved, the dispatch plan is the real
part of its solution ŝdisp:

p̂disp = <
�
ŝdisp . (5)

C. Relaxation of the non-convex power factor constraint

Eq. (4e) is non-convex and infeasible when the real power
at the GCP is zero. As proposed in [20], we express the active
power at the GCP as

p!0,t = p+,!

0,t � p�,!

0,t (6)

and replace Eq. (4e) with the following set of linear con-
straints:

p+,!

0,t + p�,!

0,t � q!0,t tan(⇡/2� ✓m) (7)

p+,!

0,t + p�,!

0,t � �q!0,t tan(⇡/2� ✓m) (8)

p+,!

0,t � 0, p�,!

0,t � 0, (9)

for all t 2 T ,! 2 ⌦, where ✓m refers to the angle
corresponding to cos(✓)min. The two terms of (6) (p+,!

0,t , p�,!

0,t )
should be mutually exclusive. To this end, we augment the
cost function (4a) with the following new term

X

!2⌦

X

t2T
⌫
�
(p+,!

0,t )2 + (p�,!

0,t )2
�

(10)

that promotes p+,!

0,t , p�,!

0,t being mutually exclusive, where v �
0 weighs the significance of obeying power factor constraints.

IV. REAL-TIME OPERATION

In the following, we describe the real-time control problem
for tracking the day-ahead dispatch plan. Its objective is to
determine the set-point for the controllable resources to track
the dispatch plan while respecting the grid and resources
constraints. Since the problem requires the knowledge of the
state of the grid (i.e., nodal voltages and line currents), of all
the components, and power flow at the grid connection point,
the problem is initially formulated as a centralized MPC. We
then acknowledge that the problem can be solved by consensus
among multiple sub-problems as in [21], [22], and we derive
a distributed formulation solved by means of the ADMM
technique.

a) Centralized MPC: During real-time operations, the
controllable resources are controlled so to track the dispatch
plan at the GCP. The decision variable for the active and
reactive nodal injection for resources r at time t is denoted
by xr,t = [pr,t, qr,t] and collected in xr = [xr,t, . . . , xr,tH

]
for the length of the optimization horizon delimited by current
time interval t and the control horizon tH . Let fr(xr,t) denote
the actuation cost of a generic resource r (the specific cost
functions are described in Sec V-B2) and p̂disp

t
the dispatch plan

set-point at time t from (5). The real-time control problem is
formulated as MPC. The problem consists in minimizing the
actuation costs of the resources subject to their operational
constraints, dispatch plan objective, local grid constraints, and
power factor limitations over the length of the optimization
horizon. The problem is:

min
x1,...,xR

RX

r=1

tHX

t=t+1

fr(xr,t) (11a)

subject to the dispatch constraint

p̂disp
t

=
RX

r=1

pr,t + 1Tpunc
t

+ pl
t

t = t+ 1, . . . , tH (11b)
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the power factor constraint at the GCP, imposed by cos (✓)min

qgcp
t

=
RX

r=1

qr,t + 1Tqunc
t

+ ql
t

t = t+ 1, . . . , tH (11c)

|qgcp
t

|  |p̂disp
t

|
tan(⇡/2� ✓m)

t = t+ 1, . . . , tH (11d)

the constraints for all controllable resources

�r(xr,t)  0 r = 1, . . . , R, t = t+ 1, . . . , tH (11e)

and the constraints of the grid

(4f), (4g) t = t+ 1, . . . , tH (11f)
(3) t = t+ 1, . . . , tH . (11g)

The formulation in (11) is convex thanks to the quadratic
objective and linear constraints. For convenience in the fol-
lowing formulation, we denote the inequality (11d), (11f) and
equality (11c), (11g) constraints with  ineq(x1, . . .xR)  0
and  eq(x1, . . .xR) = 0, respectively.

Solving the problem in (11) entails knowing the individual
resource models and accessing their state during real-time
operations. It is, therefore, referred to as centralized. Due to the
privacy and security concerns for the resources’ owners, the
centralized approach may be impractical. For this reason, we
resort to a distributed formulation that also assures better scal-
ability with respect to the number of controllable resources.

b) Distributed MPC with ADMM: As in [12], a barrier
function g is zero cost when the tracking error in (11b)
is respected and infinity otherwise. We introduce a set of
auxiliary variables zr that mimic the behaviour of the original
variables xr, allowing the centralized problem to be separable
in xr. Finally, using a sequence of Lagrangian multipliers,
denoted by y

r
, and using scaled version of the ADMM

sharing problem, the centralized problem (11) can be solved
in following three iterative updates.

1) Original variables update: xk+1
r

:=

arg min
xr

n tHX

t=t+1

fr(xr,t) +
⇢

2

����xr � zk

r
+ uk

r

����2
2

o
(12a)

subject to

�r(xr,t)  0 t = t+ 1, . . . , tH . (12b)

2) Copied variables update: [zk+1
1 , . . . , zk+1

R
] :=

arg min
z1...zR

(
tHX

t=t+1

n
g(z1,t, . . . , zR,t)

o
+

+
⇢

2

RX

r=1

����xk+1
r

� zr + uk

r

����2
2

) (13a)

subject to

 eq(z1, . . . , zR) = 0 (13b)
 ineq(z1, . . . , zR)  0. (13c)

!!(#") !#(#$) !%(#&)
Original variable updates (resources 1, 2,… , %)

Copied and dual variable updates (grid)

Communication channel.
Distributed framework.

%" , … ,%& , ((" ,… ,(&)

Fig. 1. Distributed computation of the control set-points using the ADMM
technique: the resources solve their local problems in parallel and communi-
cates the intermediate set-points to an aggregator that solves the OPF problem
associated to the microgrid dispatch. This iterative procedure is followed until
convergence.

3) Dual variable updates:

uk+1
r

= uk

r
+ xk+1

r
� zk+1

r
r = 1, . . . , R. (14)

Here, ||.||2 refers to the euclidean-norm, k is the ADMM
iteration index, and ur = y

r
/⇢ is a sequence of scaled dual

variables, ⇢ being the standard ADMM penalty parameter.
The original variable updates (also referred to as resource
problems) (12) are computed in parallel for each resource,
r = 1, . . . , R, then the copied variable update (grid aggregator
problem) (13) solves an OPF accounting for the local solutions
from each resource, and finally dual variables are updated
in (14). Then, the updated solutions of the grid aggregator
(copied and dual variables) are sent to the resources for next
iteration. Eq. (12), (13) and (14) are solved till convergence.
The problem in (12)-(14) is distributed because the resource
problems (12) can be solved in parallel and independently
without requiring the knowledge of the model of other re-
sources as well as those of the grid. The resource problem
requires just the updated solution from the grid (referred to
as copied variable) through a communication channel. The
diagram of the distributed computation is shown in Fig. 1.

The convergence criterion is met when the primal residual
norm rk = ||Xk � Zk||2 and the dual residual norm sk =
⇢||Zk+1 � Zk||2 are both smaller than a feasibility tolerance
as in [22], where X = [x1; . . . ;xR], Z = [z1; . . . ; zR]. For
the penalty parameter ⇢, we follow a self-adaptive scheme
[22], [23]:

⇢k+1 :=

8
><

>:

⌧incr⇢k rk > µsk

⇢k/⌧decr sk > µrk

⇢k otherwise,
(15)

where ⌧incr and ⌧decr apply an adjustment scheme to guide the
primal and dual residual norms to converge to zero. We fix
µ = 10 and ⌧incr = 2 and ⌧decr = 2 as reported in [23].

V. EXPERIMENTAL FRAMEWORK

A. Microgrid setup and Distributed Energy Resources

We validate our control and scheduling algorithms on the
real-scale microgrid of the Distributed Electrical Systems
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Laboratory at EPFL. The setup of the microgrid is inspired by
the CIGRE low voltage benchmark microgrid [13]. Its setup
is shown in Fig. 2 that reports the grid topology, the ampacity
limits of the cables, locations of the DERs, and the locations
of the PMU-based monitoring equipment. The microgrid is
operated at 400 V and is connected to a 20 kV medium
voltage feeder through a 630 kVA 20/0.4 kV transformer. The
microgrid interfaces a number of DERs. For this experimental
validation, we consider a load emulator to reproduce stochastic
demand, a controllable battery, and two curtailable PV plants,
with specifications as reported in Table I. They are shown
in Fig 3. The resources are interfaced with the microgrid by
power electronics converters. The capability of each resource
and associated power converter defines the feasible active and
reactive power that can be drawn from each resource.

PV1

PV2

207 A

207 A
135 A

82 A
82 A

82 A

82 A

44 A

82 A

207 A

108 A

44 A

25 kW/
25 kWh

30kVA

13kWp

16kWp

Fig. 2. The microgrid setup used for the experimental validation. We consider
three controllable resources (a battery B at bus 5, and two curtailable PV plants
PV1 and PV2 at bus 11 and 9) and a load emulator (L1 at bus 3).

TABLE I
NOMINAL DEMANDS AND CONTROLLABLE UNITS

node Id Demand (kVA) pf Resource (rating)
B03 28 0.95 Load emulator (Zenone)
B05 – – BESS (25 kWh/25 kW)
B09 – – PV2 (13 kWp)
B11 – – PV1 (16 kWp)

B. Adaptation of the algorithmic framework to the selected

DERs

We show how to customize the algorithms of sections III
and IV to fit our experimental setup.

1) Day-ahead stage: In the day-ahead stage, we consider
the battery to be the only controllable resource(2). Its schedule
is computed as described in the next paragraph. PV generation
and demand are treated as stochastic injections and modelled
with forecasts, as discussed later.

2We do not consider any scheduled curtailment for PV generation. In other
words, we let the PV generation work at the maximum power to maximize
its capacity factor.

Fig. 3. Experimental setup: (a) Rooftop PV plants PV1 and PV2 (b) Load
emulator and (c) Lechlance battery enery storage system. The ratings are
reported in Table I.

a) Scheduling the operations of the battery: battery’s
active and reactive power schedules xb,t = [pb,t, qb,t] are
determined so to respect the power rating of its converter Sb

max
and energy capacity Eb

max of the battery. With reference to the
formulation in (4), the BESS cost function is

fD

b
(xb,t) = p2

b,t
, (16)

and the constraint set �D

b
(xb,t) is

SOEt = SOEt�1 � pb,tTs (17a)
p2
b,t

+ q2
b,t

 (Sb

max)
2 (17b)

aEb

max  SOEt  (1� a)Eb

max (17c)

where SOEt is the BESS state-of-energy, Ts is the sampling
time (30 sec), and 0  a < 0.5 specifies a back-off
margin from the SOE limits. Eq. (17b) constrains the battery’s
apparent power within its four-quadrant converter capability,
which is shown in Fig. 4(a). We account for BESS power
losses by integrating its equivalent series resistance into the
network admittance matrix as described in [20].

b) Forecast scenarios of PV generation and demand: PV
generation is forecasted starting from hourly point predictions
of the global horizontal irradiance (GHI). These are from
a weather forecast service provider (meteotest.ch) for the
location of the experimental microgrid (46.5183� N, 6.5652�

E). As forecasts do not include prediction intervals, we use the
following procedure to infer scenarios (to model uncertainty)
and increase their time resolution:
• starting from historical GHI point predictions and mea-

surements from the microgrid pyranometer, we create a
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training data set consisting of the 1-day-long series of point
predictions and associated GHI realizations;

• given with the GHI point predictions for the target day,
we compute its (norm-2) distance from the historical point
predictions, take the nearest s (where s is a parameter and
is discussed later) and select the associated GHI realizations
as potential scenarios of the GHI.

The training data set includes two years of measurements
from January 2017 at a time resolution of 30 sec. GHI data
are scaled by the clear-sky irradiance to remove daily and
seasonal components using the PVlib implementation of the
Ineichen’s clear-sky model [24]. PV generation is computed
by transposing the GHI data and applying a physical model of
PV generation accounting for the air temperature as in [25].

For the demand, we use the same method as in [4]. It
consists in selecting s of 1-day long time series of historical
measurements of the demand according to calendar informa-
tion (working day/weekend, day of the week, the period of the
year) of the day for which forecasts are to compute.

The selection of s is beyond the scope of the paper and
it is defined by the user. In our case, it has been chosen
as a trade-off between availability of historical measurements
and forecasting performance. In particular, it was verified
that including a larger number of scenarios from historical
measurements was leading to a marginal improvement of the
predicted densities and a negligible impact on the scheduling
performance. If parametric forecasting methods are used in-
stead (where the modeller can choose the number of scenarios
to generate), s can be designed to achieve a target robustness
level as proposed in [26].

2) Real-time operation stage: In real-time operations, all
the controllable resources participate in achieving the dispatch
objective by leveraging the distributed MPC presented in
Sec. IV-0b. The local problem customized for the specific
resources under consideration are discussed in the following.
The resolution of the control action is 30 sec and the length
of the optimization rolling horizon is 30 minutes.3

a) Battery: the objective is to compute the active and
reactive power set-points xb,t = [pb,t, qb,t] while obeying to
power rating and energy capacity limits. With reference to the
resource problem in (12) the battery cost function is

fb(xb,t) = 1 (18a)

and the constraint set �b(xb,t) is

(17a), (17b), (17c). (18b)

b) PV power plants: PV power plants can accept a
control signal to curtail generation and implement a reactive
power set-point. However, the curtailment action should be
kept at a minimum to avoid an excessive impact on the PV
capacity factor. The objective of this problem is determining
active and reactive power set-points xg,t = [pg,t, qg,t] so as
to minimize the curtailment and operate at near-unity power
factor while subject to the apparent power limit Sg

max of the

3The choice of time resolution for the control action and the length of MPC
optimization horizon is based on the combined time (ADMM computation +
communication + implementation) taken by the real-time controller.
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Fig. 4. Feasible PQ set for the available DERs: a) battery can be controlled to
provide both +/- active (P) and reactive powers (Q), b) PV1 can only provide
+ P (PV1 converter is not designed to receive external reactive set-points),
and c) PV2 can be controlled to provide + P and +/- Q..

converter. As PV generation is stochastic, the active power
injection pg,t is upper-bounded by the theoretical maximum
generation potential, that depends primarily on local irradiance
conditions. We denote the upper bound of pg,t by bpg,t. It is
derived from short-term point predictions of the irradiance for
the horizon 30 sec-30 min by applying the same physical mod-
elling tool-chain described for the day-ahead stage. Short-term
point predictions for the whole horizon are from averaging
measurements over the last 2 minutes interval. While doing
this, we assume irradiance persistence, that is often regarded
to as the reference forecasting model for very-short term look-
ahead times [25]. In this work, we rely on short-term point
predictions that are continuously updated by leveraging real-
time measurements. In the case of slower refresh times of the
control, one could implement prediction intervals to derive
robust decisions as in [27]–[29] to hedge against longer-term
uncertainties. With reference to the resource problem in (12),
the PV cost function is

fg(xg,t) = (pg,t � bpg,t)2 + q2
g,t

(19a)

subject to the constraint set �g(xg,t)

p2
g,t

+ q2
g,t

 (Sg

max)
2 (19b)

0  pg,t  bpg,t (19c)

Equations (19b) and (19c) are the constraints on active and
reactive power injections that account for power converter’s
capability and PV generation potential.

In the experiments, we use two curtailable PV units. They
differ because they are interfaced to the grid with different
power converters. Especially, one of them cannot accept
reactive power set-points, whereas the other one can. Their
capability curves are shown in Fig. 4(b) and 4(c), and are
encoded in the constraint (19b) and (19c).

c) Short-term forecast for the demand: Given the short
look-ahead time, we use a persistent predictor to forecast the
demand for the whole optimization horizon.

C. Monitoring and actuation layers

a) Time-deterministic metering infrastructure: The real-
time control problem requires the knowledge of the grid state
at a fast pace (e.g. few sec) to update the linear grid model (1),
(2), (3). Time-synchronised and time-tagged measurements are
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from Phasor Management Units (PMUs), collected with the
setup described in [30], [31] that is capable to deliver the
measurements at 50 frames per second. A discrete Kalman
filter-based state estimator processes the measurements [32]
and provides the estimates of the voltage and current phasors
of all the nodes and lines with a total latency of less than 80 ms
w.r.t. the UTC-GPS time tag of the PMU measurements.

b) Real-time sensing and processing hardware: Each
controllable resource is equipped with a micro-controller (Na-
tional Instruments CRIO 9068). It is responsible for handling
low-level communication tasks such as collecting resource-
specific measurements, implementing feasible set-points, and
receive set-points from an upper-level controller (i.e., our
real-time controller). These functionalities are implemented in
LabView.

c) Communication infrastructure: the microgrid and its
resources communicate over a dedicated IPv4 communication
network [30]. It provides redundant packets routing using
the iPRP redundancy protocol [33] and secure the messages
with the multicast security approach proposed in [34]. A
centralized time series database based on InfluxDB facilitates
the exchange of information among the resources and the real-
time distributed controllers.

D. Implementation of the algorithms

Fig. 5 shows the sequence of operations and communica-
tion flow among of the day-ahead scheduler and real-time
controller. In the former phase (upper dashed rectangle), the
dispatch plan is computed and stored in the time series
database. In the latter (lower dashed rectangle), a real-time
local SCADA, the short-term forecasters, and controllable
resources save their outputs in the same database (at 1 sec
resolution). The real-time controllers access this information
to compute the control actions, which are then sent to the
controllable resources for actuation through UDP. The set-
points are sent continuously to minimize packet losses. The
ADMM resource problems are solved in parallel; the interme-
diate variables are also exchanged through UDP.

Fig. 5. Data flow: Dispatch plan computation starts at 23.00 UTC day-
before operation, using the PV and load forecasts, and is stored on the central
data-server. Real-time operations start at 00.00 UTC. SCADA and short-term
forecasters store their outputs to the data server each second, and ADMM
computes power set-points and implements each 30 sec.

(a) Day-ahead net demand scenarios (aggregated demand minus gener-
ation).

(b) Computed dispatch plan (in red) and scenarios at GCP.

(c) Battery active power injection and SOC for different day-ahead
scenarios.

Fig. 6. (a-c) Dispatch plan computation for day 1: 4th September 2019.

VI. RESULTS AND DISCUSSION

We present the experimental results for two days of op-
erations, Day 1 and Day 2, chosen as they feature different
PV generation patterns, being characterized by clear-sky and
cloudy conditions, respectively. We focus our analysis on the
dispatch plan-tracking performance and the operations of the
controllable resources. Grid constraints on nodal voltages and
line ampacities are always respected during the experiments
and are not shown here because of the limited space.

A. Experimental results

1) Day 1 (4th September 2019):

a) Day-ahead operations: Fig. 6 shows the input and
output information of the day-ahead dispatch process. The sce-
narios of the net demand (i.e., aggregated stochastic demand
minus generation) at the GCP are shown in Fig. 6a which
are inputs to the dispatch plan. The dispatch plan determined
by the algorithm is shown in Fig. 6b (in red) along with the
active power profile scenarios at the GCP (in different colors).
The dispatch plan is at a 30 sec resolution. The corresponding
battery’s power and SOC are shown in Fig. 6c. As we can see
from Fig. 6b, the dispatch plan appears to be tracked with high
fidelity in all the scenarios thanks to the compensation action
of the battery. Also, to avoid curtailing PV generation and
saturating the battery flexibility, the dispatch plan is negative in
the central part of the day, denoting that the microgrid exports
active power to the upper-level grid. The initial SOC is 0.75,
which is the SOC of the battery before the start of the real-time
operation.

b) Real-time operations: The real-time stage starts at
00.00 UTC. The active and reactive power set-points of the
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(a) Dispatch plan (in black), measured power at the GCP (in shaded
gray) and power at the GCP without distributed MPC (in red).

(b) Top: realised battery power injection, bottom: SOC and its limits.

(c) Realised generation for PV1 (shaded gray), realised generation for
PV2 (shaded green), maximum power for PV1 and PV2 (dashed blue
and red).

Fig. 7. (a-c) The experimental results for real-time control using the
distributed MPC on day 1: 4th September 2019.

controllable resources are computed with the distributed MPC
algorithm illustrated in Section IV. The dispatch plan is
tracked at a 30 sec resolution.

The control actions are computed one interval in advance
with respect to the actuation time (i.e., 30 sec earlier) and then
sent to the resources for being actuated at the designed time
interval. Fig. 7a shows the power at the GCP with and without
the dispatch control action (in shaded gray and solid red), and
the dispatch plan (in black). As it can be seen, the dispatch plan
is tracked with very high fidelity. Fig. 7b shows in the upper
panel the battery’s active power injection, and SOC evolution
in the lower panel. Fig. 7c shows the measured PV production
(in shaded gray and green) and their generation potentials (in
dotted blue and red). In this case, there is no curtailment as
the battery action alone is sufficient to track the dispatch plan.

To evaluate the dispatch plan-tracking performance, we
compute the root mean square error (RMSE), mean, and
maximum absolute error (MAE) of the difference between the
achieved power at the GCP and the dispatch plan, normalized
by the mean of the dispatch plan, with and without control.
Results for day 1 are summarised in Table II and show that
the control action achieves way better scores than a simple
dispatch plan purely based on forecasts. The mean, max and
standard deviations (SD) of the time and number of iterations
to solve the distributed MPC problem are shown in Table III.
As we can see, the mean and maximum time are well within
the 30 sec deadline for the control action actuation.

2) Day 2 (10th September 2019):

(a) Day-ahead net demand scenarios (aggregated demand minus gener-
ation).

(b) Computed dispatch plan (in red) and scenarios at GCP.

(c) Battery active power injections and SOC for different day-ahead
scenarios.

Fig. 8. (a-c) Dispatch plan computation for day 2: 10th September 2019.

a) Day-ahead operations: The scenario forecasts of the
net demand at the GCP are shown in Fig. 8a. Compared to
day 1 that featured clear-sky conditions, day 2 is partly cloudy
and exhibits lower PV generation levels. As a consequence, the
dispatch plan, shown in Fig. 8b, is positive during all day. The
corresponding battery’s power and SOC are shown in Fig. 8c.
Again, we can see that the dispatch plan is being tracked with
high fidelity in all the scenarios thanks to the compensation
action of the battery.

b) Real-time operations: Fig. 9a shows the power at the
GCP with and without the dispatch control action, and the
dispatch plan. As visible, the dispatch plan overestimates the
net demand in the central part of the day and early afternoon.

To track the dispatch plan, the controller charges the battery,
which, however, approaches a situation of depleted flexibility
as it is near the upper SOC limit. As a consequence, the
controller curtails both PV power plants starting from 14h,
as shown in Fig. 9c. The curtailment action is paramount
to follow the dispatch plan at the GCP, which is accurately
tracked as visible in Fig. 9a.

The tracking performance reported in Table II scores slightly
worse RMSE than day 1 because of the partly cloudy sky
conditions which determine higher PV generation variability.
Computation performance in Table III denotes that the control
actions are successfully computed within the 30 sec deadline.

B. Further analysis

This section is devoted to the following analyses: i) we
perform a sensitivity analysis on the performance of the
distributed approach by increasing the number of controllable
elements and ii) we compare the performance (i.e., optimality
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(a) Dispatch plan (in black), measured power at the GCP (shaded gray)
and power at the GCP without control (red).

(b) Top: realised battery power injection, bottom: SOC and its limits.

(c) Realised generation for PV1 (shaded gray), realised generation for
PV2 (shaded green), maximum power for PV1 and PV2 (dashed blue
and red).

Fig. 9. (a-c) The experimental results for real-time control using the
distributed MPC on day 2: 10th September 2019.

TABLE II
TRACKING ERROR STATISTICS WITH AND WITHOUT DISPATCH CONTROL

(IN (%) NORMALIZED BY MEAN OF THE DISPATCH PLAN).

Scenario Day 1 Day 2
RMSE Mean MAE RMSE Mean MAE

No dispatch 35.7 12.0 182.2 37.8 25.1 123.5
Dispatch 4.2 -1.77 23.8 4.3 -0.30 21.3

and computation time) of the centralized vs the distributed
formulations. The analysis is performed by considering the
same conditions as day 1.

1) Analysis of the algorithms performance with respect to

the number of controllable units: This analysis is carried out
by dedicated simulations with different number of distributed
BESSs. These resources are considered to have identical power
rating and total energy capacity equal to the one of the BESS in
the experimental validation. The largest number of controllable
BESS is equal to 4 units since it appears a reasonable estimate
of the possible largest number of BESSs that could be installed
in a low-voltage distribution network as the one that we
have considered. Indeed, a larger number of BESSs would
result in excessively small BESS power ratings (compared
to the nominal power of the nodes) and would multiply grid
connection costs. The additional BESSs are placed at nodes
5, 6, 7, 8 respectively. Table IV reports the corresponding
computational performance. Fig. 10 shows the boxplots of
the computation time taken by each resource and the grid
for the distributed scheme (the figure refers to a daily time
horizon). The total computation time is given by the maximum

TABLE III
COMPUTATION PERFORMANCE FOR REAL-TIME EXPERIMENTS

Day Time (sec) ADMM iterations
Mean SD Max Mean SD Max

1 8.10 5.34 18.56 9.34 6.60 19
2 5.90 4.13 13.70 7.03 5.29 17

TABLE IV
COMPUTATION TIME WITH RESPECT TO INCREASING NUMBER OF

CONTROLLABLE UNITS.

# BESS units Total time (sec)
Mean Max

1 5.6 11.8
2 5.6 21.3
4 4.7 12.6

among the resources plus the grid time. As it can been
seen, the average computation time for the BESS increases
with the number of units. However, it does not impact the
total computation time significantly as the units solve their
own problem in parallel. Therefore, increasing the number of
controllable BESSs does not influence the solvability of the
problem given the real-life solution time constraints.

Fig. 10. Computation time with number of BESS units for Day 2 (Simulation).

2) Performance comparison of the centralised vs the de-

centralised algorithms: Table V shows the results of the
comparison in terms of dispatch tracking (measured by RMSE,
mean and MAE in % of the mean of the dispatch plan) and
computation time performance of the two proposed algorithms.
As visible from Table V, the dispatching performance in both
cases is very similar. The computation time of the centralized
algorithm is shorter than the distributed one. This is to
be expected because the distributed optimization formulation
requires multiple iterations of the optimization problems to
converge to a solution, whereas the centralized algorithm
solves a single optimization problem. However, the latter needs
to know the complete models of PV and BESS resources,
which might not be available in real-life especially when
resources belong to different owners. Another advantage of the
distributed algorithm is that it is solved by several computers
usually characterised by low computing power, whereas the
centralized algorithm does require a single computer with
significantly larger computing power.

VII. CONCLUSIONS

We proposed and experimentally validated a scheduling
and control framework for DERs that achieves to track a
dispatch plan at the GCP of a distribution network that inter-
connects heterogeneous resources while respecting constraints
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TABLE V
PERFORMANCE COMPARISON OF THE CENTRALIZED VS DISTRIBUTED

ALGORITHMS.

Method Dispatch error Time (sec)
RMSE Mean Max Mean Max

Centralized 1.6 -0.5 8.9 2.0 3.6
Distributed 3.18 -2.1 10.75 5.6 11.8

on nodal voltages and lines ampacities of the local grid. In
the scheduling phase, we determine an aggregated dispatch
plan at the GCP by accounting for forecasts of stochastic
generation and demand, the state of the controllable resources,
and constraints of the grid. During real-time operations, a
distributed MPC adjusts the power injections of the con-
trollable DERs to track the dispatch plan subject to grid’s
and DERs’ operational constraints. We leverage a distributed
formulation for improved scalability and privacy-preserving
properties. To achieve a tractable formulation of the control
problem, we used a linearized grid model based on sensitivity
coefficients, computed considering point predictions in the
scheduling phase, and updated by using the most recent grid
state during real-time operations.

The framework is experimentally validated in a real-scale
microgrid hosting heterogeneous controllable resources and
monitored with PMUs. The dispatch plan, which is at a 30 sec
resolution, is computed the day before operations for the next
calendar day. The real-time control set-points are implemented
every 30 sec for all day. Experimental results, carried out
on two distinct days characterized by different irradiance and
PV generation patterns, showed that the proposed framework
achieves a reliable and accurate dispatch on a 30 sec basis,
with RMS and mean tracking errors smaller than 5% and 2%,
respectively, while respecting all grid constraints.

APPENDIX

A. Sensitivity of dispatch plan quality with weighing coeffi-

cient

We vary the weighing coefficient �r over a range of values
and recompute the dispatch plan. To quantify the reliability of
dispatch plan, we use the mean of RMSE (mRMSE) between
each prosumption scenario and the obtained dispatch plan.
mRMSE is normalized and expressed in % of the mean of
the dispatch plan. As an example, Table VI lists the mRMSE
for different �r for the dispatch computation on Day 2. It can
be seen that the variation in the mRMSE for different values
of �r, expressed as percentage of the average dispatch plan,
is small (less than 4 % for �r variation from 0.5e-5 to 0.5)
and thus the performance of the proposed problem formulation
appears invariant with respect to the value of �r.

TABLE VI
SENSITIVITY OF DISPATCH PLAN RELIABILITY

�r 0.5e-5 0.5-4 0.5e-2 0.5e-1 0.5
mRMSE 2.7 0.7 2.0 2.9 3.8
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