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Abstract

The objective of this paper is to analyze the value of energy replacement in the context of demand response.
Energy replacement is defined as the possibility of the consumer to choose the most convenient source
for providing space heating to a smart building according to a dynamic electricity price. In the proposed
setup, heat is provided by conventional electric radiators and a combined heat and power generation system,
composed by a fuel cell and an electrolyzer. The energy replacement strategy is formulated using model
predictive control and mathematical models of the components involved. Simulations show that the predictive
energy replacement strategy reduces the operating costs of the system and is able to provide a larger amount
of regulating power to the grid. In the paper, we also develop a novel dynamic model of a PEM fuel
cell suitable for micro-grid applications. The model is realized applying a grey-box methodology to the
experimental proton exchange membrane fuel cell of the EPFL-DESL micro-grid.

Keywords: Demand Response, Control-by-price, Energy replacement, Combined heat and power
generation, Proton exchange membrane fuel cell, Model predictive control, Grey-box modelling.

1. Introduction

In the recent years, flexible demand became of renewed interest as a promising resource to restore the
lack of control capacity of the power system caused by the increase of the proportion of energy production
from renewable generation. Flexible demand is that part of the consumption that can be shifted in time
without compromising the quality of the primary services it is supplying to the consumers. The electric
loads capable of flexible operation are said demand side resources (DSRs) and are, for example, the electric
thermal loads such as space heating devices and refrigeration units; in this case, the flexibility is given by
the associated thermal mass that allows a temporary deferral of the power consumption without causing
significant variations of the temperature. The utilization of flexible demand has been proposed to support
the primary control of frequency and voltage, and provide regulating power to the grid [1–8].

In this paper, we introduce the concept of energy replacement applied to the provision of space heating to
a smart building. Energy replacement consists in coupling a traditional source of space heating, i.e. electric
radiators, together with combined heat and power (CHP) generation units. The CHP source is a storage
system composed by a proton exchange membrane fuel cell (PEMFC), an electrolyzer and tanks for storing
the reactants. The control of the energy replacement setup is realized by means of model predictive control
(MPC), which achieves to schedule the operation of the energy resources according to a dynamic electricity
price and while respecting the temperature comfort of the consumer. From the power grid operation point
of view, such a setup is expected to provide larger flexibility because energy can be stored not only in the
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building thermal mass, but also by producing and storing the reactants of the PEMFC-electrolyzer system.
The electricity price reflects the need of regulating power of the grid, and, in general, is meant to act as an
economic incentive for the flexible demand to shift the consumption. This approach is known as control-by-
price, and is extensively advocated in existing literature as a simple framework to enable demand response,
since it relies on a few ICT requirements. We show by simulation that, in comparison with conventional
space heating setups [9–11], the proposed predictive control strategy achieves a reduction in the operation
cost and is able to manage effectively the extended amount of flexibility provided by the CHP system. The
topic of the integration of CHP devices at demand side level with the objective of enhancing the performance
of demand response was previously considered in [12]. We extend such a development by including dynamic
models of the fuel cell and building, showing, as mentioned above, how energy can be stored by means
of both producing reactants and exploiting the thermal mass of the building envelope. In the process of
developing the energy replacement strategy, we propose a novel dynamic model of a PEMFC suitable for
micro-grid applications. The model is realized applying a grey-box modelling methodology and is identified
using measurements from the experimental 15 kW PEMFC of the DESL facility at EPFL.

The paper is organized as follows: Section 2 describes the setup of the replacement strategy, the models
of the components and the MPC algorithm. In Section 3, the simulation results are presented and discussed.
Finally, conclusions are stated in Section 4.

2. Methods

2.1. The energy replacement concept

The objective of the energy replacement strategy is to provide heat to a smart building combining the
operations of several energy resources while minimizing the total cost of the operation and according to the
requirements of the grid, which reflects its need of regulating power into a dynamic price of the electricity.
The configuration of the energy replacement setup is sketched in Fig. 1: space heating is supplied by the
electric radiators and recovering the waste heat associated to the electrochemical conversions operated by
the FC and electrolyzer. From Fig. 1, the reactants required by the FC are produced by the electrolyzer,
and are mechanically compressed by electric compressors and stored in tanks. It is worth to note that high
pressure electrolysis could avoid the use of the compressors since the reactants are already produced at high
pressure [13]. Although, in this setup, the configuration with mechanical compression is chosen because is
more general in terms of components.

Figure 1: The setup of the energy replacement strategy. Building space heating is provided by conventional electric radiators,
the FC and electrolyzer. The reactants are mechanically compressed and stored in the tanks.

The control of the energy replacement strategy is realized using the MPC. It consists in an optimization
problem that minimizes the associated penalty function, while obeying the constraints of the system. The
formulation of the MPC strategy requires the mathematical models of the components in Fig. 1. The model
of the FC is identified using a grey-box approach and using measurements from a 15 kW PEMFC: the
modelling methodology, the experimental setup and the model are described in Section 2.2. The models of
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the compressors and tanks of the reactants are realized using a first principles approach and are described
in Section 2.4 and Section 2.5, respectively. The mathematical models of the electrolyzer and building are
from literature and are presented in Section 2.3 and Section 2.6, respectively. The formulation of the MPC
problem is described in Section 2.7.

2.2. Fuel cell grey-box model

2.2.1. Stochastic grey-box modelling

The PEMFC model is identified using the grey-box methodology, which is a framework that allows to
identify a model incorporating its physical knowledge together with measurements from a real device. The
adopted grey-box modelling process consists in formulating a candidate model as a function of unknown pa-
rameters that are estimated from measurements using maximum likelihood estimation (MLE). The objective
of MLE is determining the parameters of the model that maximize the likelihood of the model, i.e. maximize
the probability that the model can explain the set of available measurements. The mean and variance of the
1-step ahead prediction of the candidate model with parameters θ at the time step k are defined as

ŷk|k−1 = E[yk|k−1(θ)] (1)

Rk|k−1 = Var[yk|k−1(θ)], (2)

respectively, where yk|k−1 indicates the prediction of the model provided the information up to k − 1. The
1-step ahead prediction error of the model is defined as

εk = yk − ŷk|k−1, (3)

where yk is the measurement at the time interval k. Assuming that the predictions of the stochastic model
are Gaussian distributed, the likelihood function is defined as

L
(
θ,y(k)

)
=

( k∏
j=1

exp
(
− 1

2ε
T
j R
−1
j|j−1εj

)
√

det(Rj|j−1)
√

2π
k

)
p(y0|θ), (4)

which is the joint probability of the prediction errors obtained as the product of the single conditional
probability density. The parameters of the model are found by minimizing the logarithm of the function in
Eq. (4). The MLE routine that is utilized to estimate the FC model is implemented in the software package
CTSM [14], which is available as a library for the programming language for statistical computing R. In order
to capture all the dynamics inherent the system to identify, the device to model should be excited in a wide
range of frequency during its operation. This is usually accomplished by controlling the device using a pseudo
binary random signal (PRBS), that is a binary signal with a fixed period and duty cycle randomly picked
from an uniform distribution. In the case of the FC, the PRBS was replaced by a stepwise signal (shown
in Fig. 2) characterized by random durations and amplitude variations. Once the parameters are estimated,
the candidate model is validated by means of performing the residual analysis, which allows to determine if
the model is able to capture all the dynamics observable in the set of measurements. The FC dynamic model
is formulated using stochastic differential equations (SDEs), which allow to obtain, as an outcome of the
estimation process, the uncertainties related to both the system disturbances and measurements noise. In
general, this is a useful feature since a characterization of the disturbances allows to determine the statistics
of the predictions of the model and implement Kalman filtering for state reconstruction and prediction. In
the following sections, the experimental setup and the FC model are described.

2.2.2. Experimental setup

DESL laboratory at EPFL in Lausanne implements an experimental micro-grid for studying the inter-
action between distributed power generation and the electric power system. The micro-grid is composed
by a number of distributed energy resources, among which a 15 kW PEMFC. The FC system, originally
developed for automotive application, is composed by the supply system of the reactants, the FC and the
associated cooling system. All the components of the FC system are controlled and supervised by an internal
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controller, which is accessible through a CAN bus and returns information regarding the state of the system,
temperature and voltage of the stack, and maximum current that the FC can deliver. The FC is supplied
by a 240 and 480 m3 tanks at 200 bar for hydrogen and oxygen, respectively, for an equivalent of 1 MWh of
stored energy. A further pipeline provides nitrogen to the FC, that is used to purge the reactants circuit and
the membrane after each use. The electric output of the FC is connected to a programmable direct current
(DC) load. All the measurements are sampled at 10 Hz and are logged by a software in LabView, which
is also used to set the current consumption reference of the DC load. The experiment requirements are to
measure the FC stack terminal voltage, FC stack temperature and to control the current supplied by the
FC by means of the electronic load, in a similar way as done in [15]. The FC measurements that are used
to identify the model of the FC are shown in Fig. 2.
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Figure 2: The measurements used to estimate the FC model. The three plots show the FC current (that is controlled by the
electronic load), the DC voltage and the temperature of the stack, respectively.

2.2.3. Model formulation

In a FC, the not unitary efficiency of the electrochemical conversion causes a drop of the voltage available
at the terminals of the stack. The voltage of a PEMFC can be described by the equivalent electric circuit
shown in Fig. 3, where E is the modified Nerst potential and vact, vconc, Rohm are the activation loss,
concentration loss and ohmic loss, respectively [16]. All the three types of voltage losses depend on the FC
temperature and reactants partial pressures. Activation and concentration losses are evident at low and high
values of the FC current, respectively, while ohmic loss is linear with the current.

As far as the dynamic properties of PEMFCs systems are concerned, the dominant time constants are
those associated to the temperature evolution of the FC stack (O(2)) and operation of the supply system
of the reactants (O(0)), while the electric dynamics are very fast (<<O(-3)) [17]. In the existing literature,
dynamic models of PEMFCs systems were developed mainly in connection to automotive applications, and
they describe how the FC voltage is affected by the dynamics of the supply system [18–24]; in such models,
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Figure 3: The conventional description of the FC stack voltage [16].

the temperature dynamics are disregarded as it considered that the FC is operating in continuous mode,
hence with the temperature regulated at the nominal value by an active cooling system. In the case of CHP
applications, the dominant time constants of the system are those associated to the temperature dynamics
of the building, i.e. O(104 s). In this context, the dynamics of the supply system of the reactants can
be neglected since they are much faster than the dominant time constants. On the contrary, the thermal
transient is of longer duration and should be taken into account, especially if the FC is meant to operate
in a discontinuous mode, as it is the case of the proposed energy replacement strategy. These requirements
motivate the need of developing a new dynamic grey-box model for PEMFC systems specific for micro-grid
applications. The developed model of the FC is composed by two parts: a static model that describes the
voltage of the FC as a function of the FC current and temperature, and a dynamic model that describes the
temperature evolution of the FC stack.

Model of the FC stack terminal voltage. The model proposed to describe the voltage of the PEMFC is shown
in Fig. 4. The ideal voltage source OCV denotes the open circuit voltage, while the controllable voltage
source vact and resistor Rohm denotes the activation and ohmic losses, which are a nonlinear and linear
functions of the FC current iFC , respectively. At this stage, the concentration loss is not modelled because
it was not observable in the set of available measurements (indeed the maximum FC DC current was below
120 A).

OCV

+

iFC

+
vact Rohm

+

vFC

−

Figure 4: The proposed model of the FC stack voltage.

The mathematical formulation of the model corresponds to the KVL applied to the circuit in Fig. 4, that
is:

vFC = OCV − vact −Rohm. (5)

In the model, the value of OCV is chosen as a constant because no clear correlation with the temperature
was observed in the measurements. Theoretically, the OCV of a single cell is defined by the modified Nernst
potential [25], which is given as

E′(TFC , pH2
, pO2

) = 1.229− 0.85× 10−3 (TFC − 298.15)+

+ 4.3085× 10−5TFC

[
ln(pH2) +

1

2
ln(p02)

]
, (6)
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where TFC is the temperature [K] of the stack, pH2 and pO2 are the partial pressures [atm] of hydrogen
and oxygen, respectively. The derivative of Eq. (6) with respect to the temperature, calculated at the
operational value of the reactants pressure and zero current (2.50 atm and 2.55 atm for oxygen and hydrogen,
respectively), gives a value of approximately 0.8× 10−4 V K−1: the linear dependency of the modified Nerst
potential with the temperature is very small, thus assuming a constant value for OCV in Eq. (6) is reasonable.
Even if the number of the FC cells composing the stack might be known, it can be inferred by the following
expression:

nFC =
OCV

E′
, (7)

where E′ is as in Eq. (6).
A candidate function for describing the activation loss vact of Eq. (5) is the Tafel’s equation:

vact = a · ln(iFC)− b, (8)

where a and b are two coefficients to be determined empirically [18, 26]. In the proposed model, we assume
that the coefficient b does not depend on the temperature, so it can be considered as part of the FC OCV;
moreover, we replace the Tafel’s equation with the following one

vact = a′ ·
√
iFC , (9)

which is a function of similar shape as Eq. (8), but is defined over the whole set of possible values of the FC
current, i.e. iFC ≥ 0; this is done with the objective of avoiding numerical instability of the algorithm that
estimates the parameters of the model. In order to account for the temperature dependency of the activation
loss, the parameter a′ of Eq. (9) is replaced by a linear function of the FC temperature. Hence, the final
expression that describes the activation loss is given as

vact(TFC , iFC) = (α · TFC + β)
√
iFC , (10)

where α and β are parameters to be estimated.
The ohmic loss associated to the FC operation is described by a resistance; in a similar way as done for

the activation loss, we describe the resistance as a linear function of the temperature. The ohmic loss is
given as

Rohm(TFC) = γ · TFC + δ, (11)

where γ and δ are parameters to be estimated.

Model of the FC temperature. The equivalent electric circuit that describes the evolution in time of the FC
temperature TFC is shown in Fig. 5, where QFC is the heat generated by the electrochemical conversion, C
is the lumped thermal capacity of the FC, R is the lumped thermal resistance of the FC envelope, while Qext

is the heat loss due to conduction and natural convection that occurs between the FC and the environment,
which is at temperature T . The controlled current generator Qc of Fig. 5 denotes the heat extracted by the
FC cooling system, which is thermostatically controlled and is activated once the temperature of the FC
reaches the nominal operating value of ≈ 80°C; in order to reduce the number of variable to identify, the
quantity Qc is excluded from the estimation process by means of using a set of measurements where the
cooling system is off, i.e. with TFC < 80°C.

The first order differential equation that describes the circuit of Fig. 4 constitutes the deterministic
skeleton of the FC thermal model. The complete formulation of the thermal model of the FC is given as

dTFC(t) =

(
QFC

C
− TFC(t)− T (t)

RC

)
dt+ σdB(t), (12)

where B(t) ∈ N (0, 1) is a Wiener process, i.e. a stochastic process with independent normal distributed
increments, and σ is a scale coefficient to estimate. By combining the equations (10) and (11), the amount
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Figure 5: The model proposed to describe the temperature dynamics of the FC. The current generator Qc is sketched with the
dashed line because it is not considered in the identification process.

of heat QFC generated by the FC corresponds to the Joule losses associated to the voltage generator vact
and resistance Rohm of Fig. 4, and is given as

QFC(TFC , iFC) =
(
(α · TFC + β)

√
iFC + (γ · TFC + δ)iFC

)
iFC . (13)

Identification results. The parameters of the electric model and thermal model are estimated using the
procedure described in Section 2.2.1. In order to provide a warm start to the optimization underlaying the
MLE problem, the parameters of the electric model are previously estimated using measurements of the
voltage, current and temperature of the FC and applying conventional least squares. The estimated values
of the mean and standard error of the parameters of the FC model are summarized in Table 1.

Table 1: The estimated parameters of the FC model.

Name Mean Standard error
OCV 144.2 0.89
α −1.15× 10−1 4.95× 10−4

β 1.01× 101 1.91× 10−4

δ −4.89× 10−1 2.82× 10−3

γ 9.11× 10−3 3.40× 10−5

Rs 1.09× 10−1 4.89× 10−2

Cs 2.27× 104 9.55× 102

σ −9.07× 10−2 5.10× 10−3

As a support to the validation process of the model, we perform the residuals analysis, which consists
in evaluating any autocorrelation in the 1-step ahead prediction error of the model, or residual, that was
defined in Eq. (3). In the ideal case, the prediction error should be white noise, meaning that the model was
able to capture all the dynamics observable in the measurements. Fig. 6 shows the autocorrelation function
(ACF) of the predictions of the model (black profile) and the 90% confidence interval of the ACF of white
noise (blue line). Since the autocorrelation of the residuals is similar to the one of white noise, the model is
considered statistically significant.

Fig. 7 compares the measurements of the temperature of the FC with the 2 minutes ahead prediction of
the identified thermal model, and it qualitatively shows that the prediction is able to track the measurements.

Fig. 8 compares the experimentally obtained polarization curve, i.e. FC voltage as a function of the FC
current, with the one estimated using the identified electric model.

2.3. Electrolyzer Model

The electrolyzer is a device that realizes the inverse process of a FC, that is the production of pure hydro-
gen and oxygen through the electrochemical conversion of water. Nowadays, three mainstream electrolysis
technologies are available: alkaline, PEM and SOFC. For this study, a PEM electrolyzer is chosen because
it works at low temperature (20-80 ◦C) and allows a small size of the stack [27], thus is potentially suitable
for small scale applications. In [28], a nearly linear function of the stack temperature is used to describe

7



0.00

0.25

0.50

0.75

1.00

0 10 20

Sample lag
A

C
F

Figure 6: Autocorrelation function (ACF) of the 1-step ahead predictions of the FC model and the 90% confidence interval of
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Figure 7: The temperature of the FC stack according to the measurements and as predicted by the estimated thermal model
(2 minutes ahead prediction).
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Figure 8: The polarization curve of the FC according to the measurements and as predicted from the model of the FC voltage.

the efficiency of the conversion cycle. Since accurate measurements for estimating the thermal model of the
electrolyzer are not available at this stage, the efficiency is assumed as a function of the current only. The
adopted model is based on the measurements proposed in [29], which shows a positive correlation between
the stack temperature and the conversion efficiency (similarly to the fuel cell) that, with a current of 100 A,
goes from 78% to 84% respectively at ambient and nominal temperature. We describe the voltage of the
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electrolyzer vEL as

vEL = 33.1− 43.0× 10−3 iEL, (14)

where iEL is the current absorbed by the electrolyzer. In a similar way as done for the FC, the heat
associated to the operation of the electrolyzer QEL is calculated as the Joule loss associated with the model
of the voltage, that is

QEL = i2EL · 43.0× 10−3. (15)

2.4. Tank Model

As known, the mass m [kg] of a generic gas inside a tank is given as

m =

∫
ṁin − ṁoutdt, (16)

where ṁout and ṁin denote the outlet and inlet flow of the gas in [kg s−1], respectively. Assuming the gas
as ideal, the pressure p of the gas can be expressed with the law of the perfect gas as

p =
mR̄T

V
, (17)

where R is the specific gas constant [J kg−1 K−1], V is the volume of the tank [m3], and T is the gas
temperature [K]. Replacing Eq. (16) into Eq. (17) gives

p =
R̄T

V

∫
ṁin − ṁoutdt. (18)

Based on the fact that the only possible path for the electrons is the FC membrane, the inlet and outlet
flows of the hydrogen can be computed as a function of the electrolyzer and FC currents iEL and iFC :

ṁin = nEL
iEL

F
(19)

ṁout = nFC
iFC

F
, (20)

where nEL and nFC are the number of cells of the stack of the electrolyzer and FC, respectively. The
complete model of the hydrogen tank is shown in Eq. (21) (R̄ = 4.124 J g−1 K).

pH2
= 1× 10−3

R̄T

FV

∫
nELiEL − nFCiFCdt (21)

The model of the tank of the oxygen can be obtained in a similar way as done for the hydrogen. Although,
the models of the tank and compressor of the oxygen are not implemented because the consumption and
production rates of the oxygen are determined by the stoichiometric coefficients of the water reaction formula
(2H2 + 02 → 2H2O), and, as far as the formulation of the MPC is concerned, they can be implemented
using algebraic relationships rather than dynamic ones.

2.5. Compressor model

The derivative of the isoentropic compression work required to compress the mass flow rate ṁ at tem-
perature Tenv [K] from pressure p1 to p2 [Pa] is given as

Ẇisoen = ṁR̄Tenv
k

k − 1

(
p2
p1

k−1
k − 1

)
, (22)
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where k is the adiabatic index (≈ 1.4), and R̄ [J kg−1 K−1] is the specific constant of the gas that undergoes
the compression. The mechanical power required for the compression is defined as

Ẇmech =
Ẇisoen

ηisoen
, (23)

where ηisoen is the isoentropic efficiency of the compressor. Using the same approach as in [30, 31], ηisoen is
assumed constant at 0.8. Finally, the electric power needed to drive the compressor is

Pco = Ẇmech
1

ηm
, (24)

where ηm = 0.9 is the lumped efficiency of the electric motor that drives the compressor. In a similar way as
done for the tank, the mass flow rate ṁ in Eq. (22) can be calculated as function of the electrolyzer current.
The final expression of the compressor model is thus given as

Pco = nEL
iEL

F
R̄Tenv

k

k − 1

(
p2
p1

k−1
k − 1

)
1

ηm
, (25)

with R̄ = 4.124 J g−1 K.

2.6. Building thermal model

The building indoor temperature, say T (t) [°C], is described by the following first order differential
equation [32]:

C
dT (t)

dt
= − 1

R
T (t) +

1

R
Tout(t) +Aφs(t) + φh(t), (26)

where Tout is the outdoor temperature [°C] , φs is the solar radiance on the horizontal plane [W m−2], φh is
the heat supplied to the building [W], and the parameters C, R, A are the lumped thermal capacity of the
building, the thermal resistance of the building envelope and the windows surface, respectively. The values
and units of the parameters are shown in Table 2. According to the energy replacement strategy, the heat
supplied to warm the building is composed by the following terms

φh(t) = P (t) +Qc(t) +QEL(t) +Qext(t), (27)

where P (t) is the electric power consumption of the heaters, Qc(t) is the heat extracted by the active cooling
system of the FC, QEL is the waste heat associated with the operation of the electrolyzer and Qext is the
natural thermal loss of the FC. It is worth noting that a more accurate description of the dynamics of the
building temperature could be achieved using a second order model because it allows to account for the
different transients due to thermal masses of the building envelope and air [33]. However,the main focus of
this study is on describing the lumped thermal capacity of the building rather than a detailed description of
the temperature transients, hence the first order model is used.

Table 2: The parameters of the building thermal model [32].

Name Unit Value

C J °C−1 1.23× 107

R °C W−1 4.87× 10−3

A m2 10.7
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Table 3: Variables of the MPC optimization problem.

Symbol Description Type unit

T
Building indoor

temperature
state variable °C

TFC
FC stack

temperature
state variable °C

Qc

heat extracted by
the FC cooling

system

decision
variable

W

iFC FC current
decision
variable

A

vFC FC stack voltage variable V

iEL
Electrolyzer

current
decision
variable

A

vEL
Electrolyzer

voltage
variable V

pH2

hydrogen
pressure in the

tank
state variable bar

Pco
Compressor

electric power
state variable W

S Fuel cell start-up state variable –

n
Fuel cell start-up

counter
integer
variable

–

Table 4: Parameters of the MPC optimization problem.

Symbol Description Value Unit

TFC,MAX
FC nominal stack

temperature
75 °C

iFC,MAX
FC maximum

current
150 A

iEL,MAX
Electrolyzer

maximum current
120 A

pH2,MAX

Max hydrogen
pressure in the

tank
6 bar

pH2,MIN

Min hydrogen
pressure in the

tank
2.1 bar

V Tank volume 2.5 m3

N
Optimization
horizon length

50 h

nmax
Maximum fuel

cell off-on cycles
3 times/day

p
Dynamic

electricity price

2.7. Energy replacement model predictive control

The objective of the MPC strategy is to schedule the operation of the resources of the energy replacement
setup minimizing the total cost of operation, while obeying the constraints of the components and respecting
the temperature comfort of the consumer. The symbols used in this section are defined in Table 3 and
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Table 4. The former table defines the variables of the optimization problem (state variables and decision
variables), while the latter summarizes the parameters.

The cost expression of the optimization underlaying the MPC problem is given as

J =

N∑
k=0

[
− PFC,k + PEL,k + 2Pco,k + Pk

]
pk +

N∑
k=0

(
skSk + λk

[
nk − nmax

])
, (28)

where sk and λk are weights. In Eq. (28), the first summation is the total electricity cost and is calculated as
the net power consumption times the electricity price: in this case, the electric power required to compress
the oxygen is approximated with the one required for the hydrogen. In the second summation of Eq. (28),
the first term accounts for the FC startup cost (Sk ∈ {0, 1} is 1 when the FC state goes from off to on, 0
vice-versa) and the second term is a soft constraint that penalizes those schedules that require the FC to go
through more than nmax off-on cycles. The startup variable Sk is calculated as following

Sk = sgn
(
iFC,k · (iFC,k − iFC,k−1)

)
. (29)

The FC power PFC(k) in Eq. (28) is expressed as

PFC,k = vFC,kiFC,k, (30)

where vFC is determined using the FC voltage model (given in Eq. (5)) and iFC is a decision variable of the
optimization. In a similar way, the electrolyzer power PEL,k is

PEL,k = iEL,kvEL,k, (31)

where vEL,k is determined using the model in Eq. (14) and iEL,k is a decision variable of the optimization.
Finally, the compressor power Pco in Eq. (28) is expressed using the compressor model in Eq. (25).

The operational constraints implemented in the MPC are the following self-explanatory inequalities:

0 ≤ iFC(k) ≤ iFC,MAX (32)

0 ≤ iEL(k) ≤ iEL,MAX (33)

pH2,MIN ≤ pH2
(k) ≤ pH2,MAX (34)

TFC(k) ≤ TFC,MAX (35)

iFC(k + 1)− iFC(k) ≤ ∆iFC,MAX (36)

PMIN ≤ P (k) ≤ PMAX (37)

TMIN ≤ T (k) ≤ TMAX , (38)

which apply for k = 0, . . . , N . The inequality (35) limits the temperature of the FC: this task is accomplished
through Qc, which is a decision variable of the optimization problem. The comfort of the user is preserved
by the pair of inequalities in (38).

In addition to the operational constraints, the optimization problem is subject to the mathematical
models previously introduced, in particular:

• the FC operation is described by the models of the stack voltage, the heat loss and the stack temper-
ature, which are given in Eq. (5), Eq. (13) and Eq. (12), respectively.

• the electrolyzer operation is described by the models of the voltage and heat loss, given in Eq. (14)
and Eq. (15), respectively;

• the tank is described by the dynamic model in Eq. (21);

• the electric power consumption of the compressor for the hydrogen is described by the model in Eq. (25);

• the temperature of the building is described by the dynamic model in Eq. (26).

The dynamic models are discretized using rectangular integration and with a sample time of 200 s. The
MPC problem is given by minimizing the cost expression J in Eq. (28) using iFC , iEL, P and Qc as decision
variables. The optimization problem if of non linear mixed integer type, is formulated in GAMS and solved
using CONOPT algorithm.
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3. Results

In this section, the simulations results of the energy replacement MPC are presented. In order to show the
achieved cost savings and the capability of the proposed strategy to manage the larger amount of flexibility,
a traditional MPC setup is used as a benchmark. The traditional MPC setup is a building equipped with
electric space heating that is controlled by the same MPC as the energy replacement, but without any CHP
unit. In the following, the traditional MPC setup and the energy replacement MPC will be referred to as
Setup A and Setup B, respectively. In the simulations, measured values of the outdoor temperature and
insulation are utilized (sunny early spring period, ambient temperature between 2 and 6 °C and maximum
peak insulation on the horizontal plane 500 [W m−2]). Simulations are performed assuming a deterministic
context, i.e. all the forecast required by the MPC are known and the models are error free. Simulations are
performed using, initially, an artificial price signal and, subsequently, using the regulating power price of the
Nord Pool day-ahead market.

3.1. Artificial electricity price

Following the same approach proposed in [34], the flexibility of the two setups is probed using a sine wave
as an artificial price signal. Three price signal scenarios are analyzed, and each of them is characterized by
a different frequency of the sine wave. The price signal scenarios are shown from Fig. 9 to Fig. 11 and they
correspond to a period of the price signal of 5, 14 and 50 hours, respectively.
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Figure 9: The price signal of Scenario I.
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Figure 10: The price signal of Scenario II.

p
[p

u
/
k
W

h
]

Time
0d 1d 2d 3d 4d
0

2

4

6

Figure 11: The price signal of Scenario III.

Figures from 12 to 17 show the simulation results for each price signal scenario and setup. Each figure
is composed by two stacked plots; the plot in the upper panel shows the building temperature (blue profile)
and the temperature comfort range (red profile), which is chosen as 20 ± 1°C and 20 ± 1.5°C during the
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day and night hours, respectively; the plot in the bottom panel shows the net power consumption of the
building: negative values indicate that the building exports power to the grid and vice-versa. In Scenario
I, the price signal (Fig. 9) exhibits fast variations, and, in both setup, the respective MPC strategies are
to able to shift the consumption during the periods when the cost the electricity is low while keeping the
average temperature of the building in the middle of the comfort zone.
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Figure 12: Scenario I, Setup A.
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Figure 13: Scenario I, Setup B.

In the case of Scenario II, the variations of the price signal are slower than the previous case. The MPC
controller of Setup A let the temperature of the building to lay at the lowest allowed limit during the periods
with higher electricity cost, while, when the price is lower, it stores energy in the thermal mass by increasing
the temperature of the building (Fig. 14). In the case of Setup B, the extended flexibility provided by the
CHP system allows the controller to keep the average temperature of the building in the central part of the
comfort area, as shown in Fig. 15.

Finally, scenario III is characterized by a slow varying price signal. The MPC controllers of both setup
are able to modulate the power consumption according to the amplitude of the price signal. In comparison to
the previous scenario, the temperature dynamics of figures 16 and 17 are similar because, since the electricity
price varies slowly, the limited thermal mass of the building do not allow to maintain the temperature in
the middle of the comfort zone. In both Setup A and B, the controllers saturate the storing capacity of the
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Figure 14: Scenario II, Setup A.
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Figure 15: Scenario II, Setup B.

building and let the temperature to lay at the limits of the comfort zone.
In order to evaluate in a numerical form the flexibility of the two setups, we evaluate the correlation

index between the price signal and the power consumption. The correlation index is defined as

r =
Cov[p, P ]√

Var[p] ·Var[P ]
, (39)

where P is the total net power consumption of the building and p is the price signal. The correlation index
is used as an indicator for measuring how much the power consumption is affected by the variation of the
electricity cost. For an ideal fully deferrable load, the correlation coefficient should be −1, because the power
consumption is always in anti-phase with the price signal. In the case of a conventional electric load, the
flexibility is a function of the consumer comfort, and the value of the correlation coefficient is expected to
assume larger values than −1. The correlations coefficients calculated the three price signal scenarios are
given in Table 5. As expected, the power consumption of Setup B has considerable larger negative correlation
of the price signal than Setup A, meaning that the proposed energy replacement strategy is able to schedule
the operation of the different energy resources and exploit the larger amount of flexibility.
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Figure 16: Scenario III, Setup A.
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Figure 17: Scenario III, Setup B.

Table 5: The correlation indexes between the power consumption and the price signal calculate with Eq. (39)

Setup SI SII SIII

Setup B -0.91 -0.81 -0.67

Setup A -0.82 -0.48 -0.22

In order to illustrate more into details the operation of the energy replacement setup, the power con-
sumption profiles and the contributions of heat of the energy resources of Setup B is shown in Fig. 18 and
Fig. 19, respectively. In the former figure, it can be seen that when the electricity price is low, the electric
radiators and the electrolyzer sustain the space heating of the building, and the compressors are activated
in order to store the reactants. On the contrary, when the electricity price is large, the FC is activated in
order to export electric power to the grid and provide space heating to the building.
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Figure 18: The operation of the energy replacement setup (Setup B) during Scenario II: the power profiles.

 

 

Electrolyzer
FC
Electric radiators

Q
[k

W
]

Time
0d 0d 12h 1d 1d 12h 2d
0

1

2

3

4

5

6

7

8

9

10

Figure 19: The operation of the energy replacement setup (Setup B) during Scenario II: the heat profiles.

3.2. NordPool market electricity price

The simulations of this section are performed using the hourly electricity price of the NordPool day-ahead
market [35]. The electricity price is shown in Fig. 20.
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Figure 20: The hourly electricity price of the NordPool day-ahead market. The initial instant of time refers to the 4th of
August.

Fig. 21 shows the temperature profile and the net power consumption of the building controlled with the
energy replacement MPC, while Fig. 22 shows the temperature dynamics for Setup A.

Table 6 summarizes the total electricity cost for Setup A, Setup B and Setup A’, which is the same as
Setup A except that the radiators are controlled by a thermostatic controller rather than the MPC. From
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Figure 21: Energy replacement strategy (Setup B) with the NordPool electricity price.
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Figure 22: Setup A with the NordPool electricity price.

Table 6, it can be seen that the proposed energy replacement setup allows to save the 20% and 25% if
compared to Setup A and Setup A’, respectively.

Table 6: The total electricity cost calculated using the Nord Pool regulating power price of Fig. 20.

Setup Electricity cost [EUR]

Setup B (energy replacement MPC) 7.27

Setup A (MPC with only electric radiators) 9.10

Setup A’ (thermostatic controlled radiators) 9.70
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4. Conclusions

A model predictive control strategy with the objective of exploiting the potential of combined heat and
power generation of a fuel cell and an electrolyzer system was presented. This application was referred to as
energy replacement to indicate the possibility of the consumer to switch among the most convenient source
to provide space heating to a smart building according to a dynamic electricity price, which reflects the need
of regulating power of the electric grid. We showed that the proposed model predictive control strategy
is able to schedule effectively the operation of the different energy resources and outperforms other space
heating setups in terms of amount of regulating power that can provide to grid and operation cost, which
is reduced of up to 25%. In the process of generating these results, this paper presents a novel PEMFC
model suitable for smart-grid and micro-grid applications. The model has been realizing applying grey-box
methodology using measurements from the 15 kW PEMFC of the EPFL-DESL facility. As a summary, the
key contributions of the paper are:

• the concept of energy replacement, which offers a larger flexibility than conventional space heating
setup and enhances the support that flexible demand can provide to the future power system;

• a model predictive control strategy for combining the operation of conventional heating system and
combined heat and power generation devices;

• a novel grey-box model of a PEMFC suitable for smart and micro-grid applications.
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