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Abstract—In this paper, we propose a model-based filtering
strategy to reconstruct the maximum power production of a PV
power plant thanks to integrating measurements of the PV cell
temperature, system DC voltage and DC current. The filter relies
on a reversed physical model of the targeted PV system and
enables to, first, determine analytically the irradiance incident
to the panels, and, second, estimate the DC power production
as if the plant was operating in maximum power point tracking
(MPPT) mode. We present how the approach can be used to
reconstruct the maximum power value starting from a generic
operating point. As an application, we show that the proposed
strategy can improve time series-based solar power forecasting
techniques, in particular when the production of the PV system
is curtailed and thus the measured power does not correspond
to the maximum available.

Index Terms—Solar power estimation, maximum power fore-
cast, Photovoltaic (PV) system, stochastic generation.

I. INTRODUCTION

THE development of robust control strategies based on
PV generation forecasts is envisaged as a key practice to

mitigate the operational issues related to its increased diffusion
in power distribution networks. In particular, when considering
stochastic generation (e.g. PVs), it is desirable to predict the
maximum power that will be available in the coming forecast
horizon and to estimate the associated uncertainty. This is
important, for example, to adequately plan counteractions to
avoid operational issues and to schedule the reserves, [1].

Two approaches are normally possible to forecast PV power
generation: indirect and direct methods [2]. The former con-
sists in coupling prediction models of the irradiance, see [3],
with physical models of the PV system. The latter consists
in applying statistical and machine learning methods trained
on historical PV production time series assumed to be repre-
sentative of the typical variations patterns of the irradiance,
or, in other words, of the PV system maximum power. They
recently come to prominence to tackle the problem of short-
term forecasting at a large disaggregation level, also thanks to
the progressively increasing availability of measurements of
local PV generation, e.g. [4], [5]. Although the use of locally
available information is appealing, the argument on using
direct forecasting methodologies might fall flat if considering
that production measurements might be altered by curtailment
strategies, like when PV plants are required to support voltage
or primary/secondary frequency regulation, e.g. [6]. In this
case, existing direct forecasting methods should be augmented

to consider the fact that PV plants might not operate in the
typical maximum power point tracking (MPPT) mode.

In this paper, we propose a model-based filtering strategy
to reconstruct the maximum production profile of a PV power
plant starting from generic conditions (which might include
curtailed regimes) thanks to integrating measurements of the
PV cell temperature T , DC voltage v and DC current i.
The filter relies on a reversed physical model of the targeted
PV array and enables to analytically determine the irradiance
incident on the panel, and, then, to estimate the DC power
production as if the plant was operating in MPPT mode. The
reverse physical model adopted in the filtering strategy is
developed from the five-parameter cell model of De Soto et
al. in [7], extended to the whole PV array. This model has the
main advantage of requiring only datasheet information to fit
the parameters. Furthermore, the proposed reverse approach
allows to avoid irradiance sensors, which are expensive, can
have an absorption spectrum different from the PV panel, and
return local measurements that are not representative of the
irradiance on the whole plant (e.g. when part of the plant is
shaded or only partially covered by clouds). The performance
of the proposed algorithm is evaluated by first estimating the
maximum power, starting from the measured T , v and i, and
considering the converter working both in MPPT regime and
curtailed one. Then, the estimation is compared with the true
maximum power value, assumed as the one returned by a
second identical converter, working under same conditions,
and always operating in MPPT mode. Finally, as an application
of the method, we show how generic direct forecasting tools
of PV power might benefit from the proposed filtering strategy
and improve their performance, compared to the case where
past row power measurements are directly used to feed the
algorithm. The paper is organized as follows: Section II briefly
introduces the state-of-the-art while Section III states the main
problem tackled in the work. Section IV describes in details
the proposed approach. Section V illustrates the experimental
setup while Section VI discusses the main results. Section VII
shows an application of the method to improve time series-
based power forecasts. Section VIII draws the main conclu-
sions.

II. STATE-OF-THE-ART

Among the several methods proposed in the literature for
PV cell simulation, the single-diode five-parameter model



proposed in [7] represents a good trade-off between having
good accuracy and low computational complexity. While it
is generally used to compute the i-v curves of the PV cell,
starting from sensed irradiance and cell temperature, we focus
here on the reverse approach that uses measurements of DC
electrical quantities (v and i) and cell temperature T as inputs.
Some research works from the existing literature exploit the
reverse cell model but with different aims and applications
than the one here proposed. For instance, in [8] three mathe-
matical models to estimate the irradiance by sensing v, i and T
in different load conditions (including short and open circuit),
are analysed and compared. The main drawback is that most
of existing PV systems are not designed to disconnect and
move to short circuit and open circuit conditions. Authors of
[9] propose a globally convergent estimator of the irradiance
starting from v, i and T measurements, assuming that the
plant operates in MPPT mode and without extending the
analysis to the power estimation. Finally, in [10] the reverse
model approach is proposed to implement MPPT for a single
panel by integrating irradiance measurements from a dedicated
pyranometer for the identification phase only.

With respect to the existing literature, we apply model-based
filtering to the problem of reconstructing MPPT conditions of
an entire PV system, starting from a generic operating point,
with the model identified from datasheet information only.
Furthermore, we show how this can be applied to improve
time series-based power forecasting tools.

III. PROBLEM STATEMENT

We consider a time series of historical measurements of the
DC voltage, current and cell temperature of a PV installation,
which is possibly operating in curtailment regime. The prob-
lem is given by reconstructing the sequence of power produc-
tion as if the plant was operating in MPPT mode1. We do this
by developing a dedicated filter based on the well known five-
parameter model of a PV cell, and integrating measurements
of the cell temperature T , DC voltage v and DC current i
as measured on the PV module rear2 and converter DC bus,
respectively. As an example of the application of the proposed
approach, we show how it can be used to pre-filter the training
time series of data-driven PV production forecasting models
(which learn from historical power measurements) to improve
their performance. The application is sketched in Fig. 1.

Fig. 1. Application of the proposed strategy. We indicate with P̃ the estimated
maximum power and with P̂ the forecasted one.

1We disregard here the effect of measurements uncertainties on the max-
imum power estimation. Work is ongoing to include a dedicated process
capable of filtering measurement noise and eliminate measurement errors.

2We hereby assume that the cell temperature is close enough to the module
rear one, and that its value is uniform across the whole PV system.

IV. METHODS

This section describes the main components of the proposed
filter. First, we introduce the five-parameter model of the PV
cell, and the associated identification problem to determine the
unknown parameters. Second, building up the five-parameter
model, we derive the analytical method to estimate the solar
irradiance incident on the panels, then used to reconstruct the
maximum power point.

A. PV Modeling

The five-parameter model is a non-linear electric circuit
model (shown in Fig. 2) useful to determine the current
delivery capability of a PV cell as a function of the terminal
DC voltage and the value of five parameters. Its extension to
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Fig. 2. The five-parameter circuital model for a PV cell.

a PV module composed of ns cells in series and np in parallel
is:
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where i is the DC current, v DC voltage, nr diode ideality
factor, k Boltzmann constant, q electron charge, T cell tem-
perature, Rs and Rp are the series and shunt resistances, Ip
and id the light and saturation currents, respectively. The five
unknown parameters of the model Rs, Rp, Ip, id, nr are first
computed at reference conditions. Standard Test Conditions
(STC) are temperature T ⇤ = 25 �C and irradiance S⇤ =
1000Wm�2 and are here denoted with (⇤). The extraction
of the five parameters at STC needs the following datasheet
information: the open circuit voltage (v⇤

OC
), the short circuit

current (i⇤
SC

), the voltage and the current at the maximum
power (v⇤

MP
and i⇤

MP
), all at reference conditions, the absolute

temperature coefficients of the open circuit voltage (�) and of
the short circuit current (↵). In our case, we use the reduced
form of the model, proposed in [11], that guarantees to find
a physically feasible solution of the problem at first launch.
The model is reduced from five to two parameters (Rs and nr)
and solved using the fsolve function in Matlab. The parameters
computed at STC need to be updated for different irradiance



and temperature conditions using the following equations:
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where E⇤
g

is the band gap energy at T ⇤, in eV.

B. Maximum Power Estimation
As described in Section II, several approaches have been

proposed to compute the maximum power, starting from the
physical model of the PV system. In the here proposed formu-
lation, the irradiance is calculated analytically by substituting
equations (2)-(6) into (1) and solving for S̃. Formally, it is:
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where v, i and T are measurable quantities. The estimated
irradiance S̃ is then used, together with T , to compute the DC
output power according to the following procedure:

• as defined in [12], the open circuit voltage vOC is:

vOC = v⇤
OC

(1 + �(T � T ⇤)) + Vtnrns ln

 
S̃

S⇤

!
(9)

where Vt = kT/q is the thermal voltage;
• we compute the DC current for different DC voltage

values by using Eq. (1), where v varies between 0 and
vOC , this allowing to determine the i-v curve;

• we extract from the i-v curve the maximum power point
for the PV module (maximum product i · v). Then,
assuming that each module has the same behaviour, we
multiply the obtained value by the number of modules to
get the system DC maximum power estimation.

V. EXPERIMENTAL SETUP

The experimental setup is located at the DESL laboratory
at EPFL (GPS coordinates 46.518N, 6.565E) and consists of 4
identical strings with 14 ECSOLAR 255 W Polycrystalline PV
modules each, connected in series. The strings are connected
to two three-phase DC/AC converter equipped with a DC/DC
converter that can operate in MPPT mode or under external
control, i.e. it feeds electricity into the grid according to a
specific active power external request. Two strings go to the
first converter (here denoted as C1) and the other two to the
second one (C2). The scheme is shown in Fig. 3. The two
converters are of the same commercial model,independently
controlled and connected to the same AC bus. This allows
validating the method during curtailment regimes (operated

in C1), by leaving C2 working in MPPT for the whole time
and using its delivered power as the true maximum power
value. DC currents are measured with LEM LF 205-S current
transducers while the voltages are measured with a LEM-CV
3-100 voltage transducers. The temperature is measured using
a TSic303 sensor installed on the rear surface of a PV panel,
assuming the module temperature is close enough to the cell
one, that is more difficult to measure. All the measurements
are sampled with 10 sec resolution. Only daylight data are
selected for the analysis, which is assumed for solar elevation
angles larger than 3�.

PV STRING 1

PV STRING 2

C1
PV STRING 3

PV STRING 4

C2

GRID

Fig. 3. Scheme of the experimental setup.

VI. EXPERIMENTAL RESULTS

In this section, the maximum power estimated by the pro-
posed approach is compared to the true maximum power value,
which is assumed known from measurements as described in
Section V. The comparison is carried out for a clear-sky and
a partly cloudy day. For each day we consider two distinct
cases, which are denoted by MPPT Conditions and Curtailed
Conditions. The former refers to periods when the converter
operates in MPPT mode, while the latter to when it operates
in curtailment regime. This is with the specific objective of
validating the proposed method for a generic system working
point, in other words without any a priori assumption on the
fact if the plant is tracking the maximum power point or not.

To assess estimation performance, we use the relative Root
Mean Squared Error (rRMSE) and the maximum error Errmax:

rRMSE =
1

P̄

vuut
mP
t=1

(P̃t � Pt)

m
(10)

Errmax = max
n���P̃t � Pt

��� , t = 1, . . . ,m
o

(11)

where m is the number of considered estimations, P the true
maximum power value of the plant (provided by the converter
working in MPPT mode), P̃ the estimated maximum power
value, and P̄ the average power in the considered period.

A. MPPT Conditions
The comparison between the true and estimated maximum

power point values when the plant operates in MPPT mode
is shown figures 4a and 5a for a clear-sky and partly cloudy
day, respectively. Details are extracted in figures 4b and 5b to
allow better visualization. Table I summarizes the estimation
performance metrics and shows a rRMSE error below 3% level
and a maximum error below 50 W, for a rated power of the
PV system of 7.14 kW.
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(b) MPPT Clear-sky Day-Detailed

Fig. 4. The true maximum power (from C2) is compared with the estimated one, considering a clear-sky day. The system works in MPPT conditions.
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(b) MPPT Partly Cloudy Day-Detailed

Fig. 5. The true maximum power (from C2) is compared with the estimated one, considering a partly cloudy day. The system works in MPPT conditions.

TABLE I
RRMSE AND MAXIMUM ABSOLUTE ERROR IN MPPT CONDITIONS.

rRMSE [%] Errmax [W]
Clear-Sky 0.51 45

Partly Cloudy 2.35 37

B. Curtailed Conditions

The analysis shown above for the MPPT case is here re-
peated considering the system in curtailment regime. Recalling
from Section V, the output power of converter C1 is curtailed
(shown in Fig. 6 for the two selected days), while the measured
power of converter C2 is used as the true value for comparison.
Estimations and true values are shown in figures 7a and 8a for
two selected days, while a more detailed visualisation is shown
in figures 7b and 8b. The estimation performance metrics are
summarized in Table II. We can state that the method is able
to reconstruct the maximum power with small rRMSE (5-
7%) even when curtailment is adopted. However, performance
of the maximum power point estimation is worse for the
curtailment regimes than MPPT mode (especially in terms
of maximum absolute error). This is explained by the larger
sensitivity of the estimation with respect to the temperature
when the system operates closer to open circuit conditions.
This is clarified by Fig. 9, where two cases are considered: i)
the DC voltage and current are fixed at their maximum point
(MP) in STC conditions, and ii) the DC voltage and current
are fixed at their open circuit (OC) point in STC conditions.
From Fig. 9, it is well visible the high impact of temperature
measurement errors on the estimated irradiance when closer
to the open circuit point.

TABLE II
RRMSE AND MAXIMUM ABSOLUTE ERROR IN CURTAILED CONDITIONS.

rRMSE [%] Errmax [W]
Clear-Sky 5.4 452

Partly Cloudy 6.5 320

VII. APPLICATION

As a main application of the method, we show how it
can be used to pre-filter historical power measurements and
improve forecasting performance of data-driven prediction
tools for PV generation. We select two artificial intelligence-
based forecasting methods and compare two cases:

• Direct forecasting (DF). The algorithm is trained with a
time series composed of raw past power measurements
where it is implicitly assumed that the system under
consideration operates in MPPT mode.

• Filtered direct forecasting (FDF). The algorithm is
trained with pre-filtered power measurements according
to proposed method using measurements of v, i and T .

We use two datasets at 5 min resolution, each consisting of
30 days for the training and 5 for testing.In the first dataset,
the system entirely operates in MPPT mode. In the latter, it is
curtailed according to a random pattern for 12 training days
and 2 testing days; this is done by controlling the PV converter
active power set-point, while it is left in MPPT mode for the
remaining days. The forecast horizon is 5 min.

A. Selected Forecast Methods

In this Section, we present the two selected forecasting
methods. The first is for point predictions and consists in
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Fig. 6. The true measured power of C1 is shown, for which the power output is curtailed. The red spikes individuate a set-point change.
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Fig. 7. The true maximum power (from C2) is compared with the estimated one, considering a clear-sky day and power curtailment.
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Fig. 8. The true maximum power (from C2) is compared with the estimated one, considering a partly cloudy day and power curtailment.
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Fig. 9. The estimated irradiance is plotted as a function of the cell temperature
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an artificial neural network (ANN), with 10 neurons in the
network’s hidden layer, trained by applying the Levenberg-
Marquardt back-propagation algorithm, [13], with Matlab. The
second method is for prediction intervals (PIs, defined as the
range (P ", P #) where a realization is expected to fall with
a given confidence level) and it was proposed in [14] for

irradiance forecast. The method is here re-adapted to directly
forecast the DC power output. It consists in, first, clustering
historical observations of the power production according to
the value of selected influential variables. In particular, we
consider a training dataset of historical differentiated power
measurements dP1, . . . , dPN , from which we extract the i)
the normalized average power value on a mobile window,
and ii) the normalized power variability, as it is formulated
in [14]. Then, we use the k-mean algorithm to cluster the
training set. During the on-line computation, when a new
power measurement (Pt) is available, the influential variables
are calculated in real-time and used to select the cluster that
resembles at most the actual conditions. The most similar
cluster is therefore used to compute the PI by calculating
the symmetric quantiles (q" and q#) according to a given
confidence level (i.e. the cluster is considered as an empirical
conditional probability function of future realizations). PIs are
calculated by summing the current measurement to the upper



and lower quantiles of the differentiated time series:

P "
t+1|t = Pt + q", (12)

P #
t+1|t = Pt + q#, (13)

It is important to highlight that we are not interested here
in assessing the skills of the forecasting methods, rather
showing the advantage introduced by the proposed pre-filtering
approach in the forecasting chain.

B. Forecast improvement

The metric used to evaluated point predictions performance
is the mean absolute error (MAE):

MAE =
1

N

NP
t=1

(P̂t+1|t � Pt+1) (14)

where P̂ is the one-step-ahead prediction, P is the realization,
and N is the number of measurements in the testing dataset.
For the case of PIs, we use standardized metrics from the
literature, see [15]. The first is the PI coverage probability
(PICP, which counts the number of realization inside the PI):

PICP = 1
N

P
N

t=1 ct ct =

(
1, P̂ #

t+1|t  Pt+1  P̂ "
t+1|t

0, otherwise.
(15)

Then, to account for the fact that the wider the PI, the easier
it is to have a realization falling inside it, we measure the
prediction interval normalized width (PINAW):

PINAW = 1
NPmax

P
N

t=1(P̂
"
t+1|t � P̂ #

t+1|t). (16)

where Pmax is the system rated power, in our case equal to
7.14 kW. The target confidence level is set equal to 95%.
Results are summarized in Tables III and Tables IV for the
point and PI forecast, respectively. When the system works in

TABLE III
ANN-MAE

[W] MPPT Curtailed
DF with ANN 223 640

FDF with ANN 213 295

TABLE IV
K-MEAN-PICP/PINAW

[%] MPPT Curtailed
DF with k-mean 96.6-18.2 79-20.54

FDF with k-mean 96.6-18.2 96.2-18.2

MPPT state, performance are not altered by the filter. However,
it is clear the benefit introduced by the proposed technique
when curtailment strategies are adopted. In this case, the DF
produces large errors whilst our method has lower MAE for
the ANN case and higher PICP with lower PINAW for the PIs
k-mean-based forecasting method.

VIII. CONCLUSION

We have described a model-based technique to estimate the
maximum power value of a PV production plant by using
measurements of the DC voltage, DC current and the module
temperature. It exhibits overall good estimation performance
in different operating conditions when tested in a real exper-
imental setup, in both clear-sky and partly cloudy conditions.
Indeed, we obtained a maximum rRMSE below 7%. It was
found that estimation error is larger when operating closer to
open-circuit conditions due to a large sensitivity with respect
to temperature measurements. As an application, we show how
the method can be applied to pre-filter historical PV production
measurements prior to use them to train data-driven forecasting
models. It was shown that its use is always beneficial to
improve prediction performance. In particular, when historical
measurements are in MPPT mode, filtering does not negatively
affect performance, while it leads to a substantial improvement
when historical data includes operation in non-MPPT mode.
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