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Abstract—It is described that controlling or shedding by price
the power consumption of a population of thermostatic loads
introduces in the aggregate consumption dynamic effects that
cannot be disregarded if electrical flexible demand is meant
to supply power system services. It is shown that inducing a
desynchronization in the consumption contributes to damp the
oscillations. Results are supported by Monte Carlo simulations
of a population of buildings equipped with electric space heating
whose consumption is indirect controlled by a dynamic price of
the electricity.

I. INTRODUCTION
The increasing cost of traditional sources for electricity

generation and the thrust towards a more sustainable impact
of human activities on planet Earth are leading the need
of integrating more renewable energy in the power system.
The axiom on which the power system is based is that the
electric generation has to match the consumption and this
is accomplished by regulating the production to respond to
system frequency variation. Increasing the share of generation
from renewable sources decreases the amount of controllable
production in the grid limiting the penetration that renewables
can achieve.

A solution that is envisaged for restoring the lack of
controllability is controlling the electric power demand. Such
a solution is dated back in time [1]. However it has been
revitalized in the recent years because the promising transition
to smart grid constitutes an adequate enabling technology for
realizing it in large scale and in an automated way. Control-
by-price or indirect control is often mentioned as a way
for supplying regulating power and supporting the ancillary
services of the electric grid. The need of regulating power
of the grid is reflected into a dynamic energy price that
is used for inducing a shift (or sometimes a shedding) in
the power consumption of demand side resources (DSRs).
DSRs are electric loads whose consumption can be shifted
without impacting the quality of the primary services they
are supplying to the consumers. The paradigm of controlling
flexible demand is that the contribution in terms of electric
power support from the single DSR is not relevant for the
power system while the aggregate and coordinate contribution
from a large population of DSRs might have important size and
hence the capability of impacting the operation of the electric
grid. Nevertheless flexible consumption cannot be regarded
as a fully controllable virtual unit as the aggregate electric
power consumption primarily depends on consumers demand
and DSRs operational constraints.

Load kickback effect, are investigated originally under the
circumstances of restoration from a power system outage [2].
It is due to the fact that the usual diversity of different loads is
lost and they have temporary synchronized behaviour. Under
the smart grid frame, the kickback effect may happen as well:
the ancillary services instruct the DSRs to perform same or
similar actions to their flexible consumption. [3] presented the
load kickback model of water heaters. The kickback curve is
formulated as a function of curtailed energy using regression
method. In [4], the software EnergyPlus is used to identify the
payback effects of the components inside the building (e.g.,
space-heating and air-conditioning systems) by specifying the
thermostat model. The kickback effects are observed from a
large population of thermostat loads in some studies [5] and
a control strategy for reducing it is proposed in [6]. However,
given the increasing importance of demand response in the
power system, the dynamic behavior of the aggregate demand
should be investigated specifically.

In this paper, the dynamic behavior of the aggregate
response of an indirect controlled population of DSRs is
studied. A sensitivity analysis through Montecarlo simulations
is performed considering a homogeneous (i.e. same kind of
DSR but not same characteristics) population of 100× 103

thermostatic controlled loads (building electric space heating)
and it is shown how controlling them with an identical indirect
control signal (e.g. price signal) introduces time dynamic
effects that need to be taken into account if flexible demand is
meant to supply regulating power to the grid or other power
system services. It is also shown that inducing a diversification
in the state of DSRs provide to desynchronize the aggregate
consumption hence leading to a more desirable behavior for
the power system. This conclusion can be considered for devel-
oping price responsive controller for indirect control capable
of producing better behaving aggregate power consumption.

The paper is organized as follows: Section II describes
the indirect control setup, building thermal models, price
responsive control algorithm along with the description of the
Monte Carlo simulations scenario. In Section III a detailed
description of the kickback effect is provided and supported by
simulation results. Monte Carlo simulations of the population
are provided and discussed in Section IV. Conclusions are
stated in Section V.

II. INDIRECT CONTROL SETUP
The indirect control setup that is considered for supplying

power system services is the one shown in Fig. 1. An indirect



control signal, say the electricity price p(t) (however no market
considerations are given in the sequel), is used for inducing a
shift in power consumption of a population of DSRs.

price signal aggregate response

p(t) P (t)

Fig. 1. Indirect control setup. A price signal indirect controls a population
of 105 buildings equipped with electric space heating.

The population is composed by 105 buildings equipped
with electric space heating. The aggregate power consumption
P (t) of the population is simulated with a bottom-up approach
and combining together the individual power requirement of all
buildings. Each building is described by a first order dynamic
model and it is discussed in Section II-A. Each space heating
unit is equipped with an price responsive control algorithm that
is discussed in Section II-B. The simulations are performed
using a Monte Carlo approach, i.e. buildings and control
algorithms have identical form across the population but their
parameters are variated according statistical distributions (Sec-
tion II-C).

A. Building thermal model
The temperature Tj of each building j of the population is

simulated with the first order thermal model given in Eq. 1
where input quantities φs, T out are time series for solar
irradiance [Wm−2] and outside temperature [◦C] respectively
and uj(t) is the controllable input (on/off) and the parameter
Dj is the nominal power consumption of the space heating.
The parameters Cj , R, Aj are respectively the lumped thermal
capacity of the building, the thermal resistance of the building
towards the exterior environment and the window area. Cj and
Aj are parameters depending on the size of the building and
the criteria with which they have been assigned is explained in
the sequel. ηj(t) in Eq. 1 is a zero mean Gaussian noise term
which is introduced for further differentiating the behavior of
the models in the Monte Carlo simulations.

Cj
dTj(t)

dt = − 1
RTj(t) +Djuj(t) +Ajφs(t) +

1
RT out(t) + ηj(t)

(1)

The parameters of the thermal model in Eq. 1 of
Power Flexhouse are reported in Table I. Power Flexhouse
is a free standing building and it is used as facility for testing
demand side management strategies at DTU Elektro, Denmark
[7].

TABLE I. POWER FLEXHOUSE I ORDER THERMAL MODEL
PARAMETERS.

Name Unit Value

CFH [kW ◦C−1] 12.3 × 103

SFH [m2] 125

AFH [m2] 10.7

The values of the parameters in Table I (which are obtained
by grey-box modelling) are used as base values for deriving

those of all the other models in the population. While the
value of the thermal resistance R is kept constant across
the population (it is assumed that the buildings have same
insulation characteristic), the values Cj and Aj are respectively
obtained using the expressions in Eq. 2 and Eq. 3 where Sj

is the size [m2] of the building j and SFH is the one of
Power Flexhouse.

Cj =
Sj

SFH
CFH (2)

Aj =
√

Sj

SFH
AFH (3)

In other words each Cj and Aj are scaled according the
size of the building they represent (an explanation of the
empirical relationships in Eq. 2 and Eq. 3 is provided later).
The size Sj [m2] of each building is a Gamma distributed
random variable and it is given in Eq. 4. The histogram of
100× 103 realizations from Eq. 4 is shown in Fig. 2. The
distribution in Eq. 4 and the associated parameters k, θ have
been obtained performing a statistical analysis of the size of
the class of buildings whose Power Flexhouse is representative
using data from the Danish National Register of Buildings
(BBR) [8].

Sj ∼ Γ(k, θ) with k = 22.35 ∨ θ = 1/6.71 (4)
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Fig. 2. Stochastic realizations from the Gamma distribution in Eq. 4.

The motivations for Eq. 2 and Eq. 3 are hereafter ex-
plained. The thermal capacity of building is due both to its
air content and envelope thermal mass. Assuming constant
building height, the air volume is linear with the building size
Sj . Assuming rectangular shape and same sides ratio of the
buildings, the lateral surface of the building is proportional to
the square root of building size Sj . Assuming constant thermal
resistance, the thickness of the insulation layer (R ∝ thermal
conductor thickness on exchange area) has to grow linearly
with the lateral surface hence linearly with the square root of
the building size Sj . As the volume of the insulation layer
and walls is given by the lateral surface times the envelope
thickness (and both are linear with the square root of the
building size) it can be concluded that the volume of the
building envelope is also linear with Sj . In case of parameter
Aj , it is assumed that the window area of each building j is
proportional to the building lateral surface hence to the square
root of the building size Sj and t given in Eq. 3. A is the
estimated value of Power Flexhouse window area and it is
given in Table I.



B. Price responsive building temperature controller
Each building j of the population is equipped with a price

responsive controller that acts on the top of a thermostat
(feedback controller with hysteresis) as shown in Fig. 3.

p(t) Hj(s) Thermostat Building

T in
j

∆Tj(t) T set−point
j

uj(t)

hj

Tj(t)

Fig. 3. Price responsive local controller + house thermostatic controller.

The price signal is elaborated by the high pass filter Hj(s)
whose expression is given in Eq. 5, where aj is the temperature
variation induced by an unitary stepwise change of p(t) and
τj is the filter time constant (s is the Laplace operator).

Hj(s) =
∆Tj(s)

p(s)
=

ajs

s+ τj
(5)

The steady state contribution of Hj(s) is null, meaning that
if the price signal does not change for sufficient long time, the
original set-point is restored. This is because it is assumed
that the consumers are not willing to affect their temperature
comfort at steady state (nondisruptive load control).
The set-point of the thermostat T set−point

j (t) is given in Eq. 6
where T in

j is the user indoor comfort temperature.

T set−point
j (t) = T in

j +∆Tj(t) (6)

The quantity hj in the thermostat block of Fig. 3 is the
hysteresis of the controller and uj(t) represents the state of
the space heating.

C. Parameters variations in the Monte Carlo simulations
Monte Carlo simulations, i.e. accounting for stochastic

variations of the parameters, are performed for considering
differences of both building and price responsive controller
characteristics across the population. Table II shows the PDF
according to which the parameters are picked and the correla-
tion coefficients between them. Correlation among Sj (hence
thermal capacity Cj) and bothDj and τj is introduced because
the space heating nominal power and the time constant of the
filter are assumed to related to the size of the building.

TABLE II. PARAMETERS DISTRIBUTIONS AND CORRELATION
COEFFICIENTS ASSUMED FOR MATRIX FOR MONTE CARLO SIMULATIONS

- PDF Cj A φh Tj hj aj τj

Cj Γ(22,663) 1 .99 .99 0 0 0 .85
A Γ(88,.13) .99 1 .99 0 0 0 .84
Dj 80·Sj+N(.252 ,1) .99 .99 1 0 0 0 .84
T in
j N(21,.152) 0 0 0 1 0 0 0
hj N(1,.102) 0 0 0 0 1 0 0
aj N(−1.5,.12) 0 0 0 0 0 1 0
τj

(Sj−150)

.1
+N(7e3,1) .85 .84 .84 0 0 0 1

III. DESCRIPTION OF THE KICKBACK EFFECT

The simulation in support of this discussion is obtained
with the setup in Section II-C with the exception that the
threshold of the thermostats and the parameters of the con-
trollers are constant across the population. This is for facil-
itating the visualization and the description of the dynamics
phenomena associated to the aggregate consumption. Solar
radiation and ambient temperature (needed by thermal models)
have been arbitrarily set to 0 and 10 ◦C respectively and they
are assumed constant both in time and across the population.

The aggregate power consumption response of the build-
ings (Fig. 4-I) to a step variation of the price signal (Fig. 4-II)
is analyzed in this section. Four points of interest have been
identified along the consumption profile of Fig. 4-I and they
are indicated by the colored marks. In the sequel, the instants
of time that corresponds to the marks are analyzed. Fig. 4-
III shows the temperature deviation that the indirect control
algorithm (Section II-B) applies to each building.
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Fig. 4. Population power consumption (I) when controlled by price signal in
(II). The temperature deviation produced by the algorithms is shown in (III).
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Red mark (steady state): the aggregate power consumption
does not exhibit any variation. This is a steady state situation
and, statistically, for each thermostat turning on, there is one
turning off and vice-versa. The histogram in Fig. 5 shows that
the distribution of the distance between the temperature of each
building and the respective set-point (i.e. Tj(t)−T set−point) is
uniform across the population. The buildings moving rightward
are those whose space heating is on and those which eventually
pass the right threshold are the ones switching off. The units
moving leftward are cooling down (space heating off) and
those which pass the left threshold are the ones switching
on, hence contributing positively to the aggregate power con-
sumption. The red bars in the histogram of Eq. 7 shows the
distribution of the units state.
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Fig. 5. Histogram of the distance of the temperature of each building from
the respective set-point (Tj(t) − T set−point

j ) at the red mark of Fig. 4-I.

Green mark: the price signal variation is perceived by
the indirect control algorithms which therefore decrease the
temperature set-point of the respective building. All the units
that are in on state and whose temperature is higher that the
new thermostat set-point are switched off. This provokes a drop
in the power consumption. By comparing Fig. 5 and Fig. 6, it
is possible to notice that the histogram is shifted on the right
of the thermostatic interval (whose thresholds are denoted by
the two red dotted lines). A consequence of this is that – for
a certain period of time – no units will be able to trigger the
consumption on because they need to cool down in order to
reach the new left thermostatic bound. This unbalance causes
the aggregate power consumption to decrease further as shown
by the power profile behavior between the green and orange
marks in Fig. 4-I. The blue bars in the histogram in Fig. 7
show the distribution of the state of the space heating units
for the instant of time under consideration and, as expected,
the group of units in the off state for the instant in analysis is
larger than in the steady state.
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Fig. 6. Temperatures distances distribution at the green mark in Fig. 4-I..

Orange mark: the power consumption profile reaches the
minimum value. The histogram in Fig. 8 shows a large number
of units being in the proximity of the left thermostatic threshold
and hence close to trigger the consumption on (if off). It
is worth to note that while time passes, the indirect control
algorithm gradually removes the temperature offset (Fig. 4-
III) hence ’accelerating’ the movement of the population in
the histogram towards the center.
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Fig. 7. Distribution of the units state across the population at steady state in
the proximity of instant of time indicated with the green mark in Fig. 4-I .
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Fig. 8. Temperatures distances distribution at the orange mark in Fig. 4-I.

Magenta mark: here the aggregate power consumption
assumes the same value as at steady state (red mark). However
this situation does not result in a equilibrium point because
the flow of units trespassing the right thermostatic threshold
does not equal the flow in the opposite side. By comparing
the histograms in Fig. 8 and Fig. 9 it is possible to notice that
there is a ’wave’ moving leftwards, hence composed by units
that are cooling down. This unbalance will cause the aggregate
power consumption to increase because a large number of units
is expected to trigger the consumption on in the near future.
This will cause more units to consume power concurrently
and hence provoking a kickback effect on the aggregate power
consumption (black mark).

Black mark: it corresponds to the peak of the kickback
effect of the aggregate response. After the black mark, the
aggregate power consumption in Fig. 4-I undergoes to a period
with dumped oscillations before reaching a new steady state at
time t ≈ 15 h. The steady state power consumption does not
differ than the initial one because the indirect control algorithm
does not introduce any steady state contribution for not altering
the user comfort.

IV. MONTE CARLO SIMULATIONS

Simulations are performed with the setup discussed in
Section II-C, therefore accounting for variations across the
population of buildings characteristics, parameters of price
responsive controller and parameters of the thermostat. Fig. 10
shows the aggregate power consumption behavior to a step
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Fig. 9. Temperatures distances distribution at the magenta mark in Fig. 4-I.

variation of the price signal for three different values of the
standard deviation of η 1 (the noise term in Eq. 1) and it resem-
bles the response of a second order system at different damping
ratios. Initially, the variation of the price signal provokes a
synchronization of the state of those units that switch off. A
small variance noise term does not promote a diversification
of the consumption for those units have been switched off
that hence tend to trigger the consumption together for long
time causing undamped oscillations. A large variance reduces
the deep of the initial power contribution but it contributes to
restore a diversification in the consumption hence the peak
of the kickback effect is reduced in amplitude and spread
in time. Such a characteristic is surely more desirable for
the power system point of view. However the noise term is
not a controllable parameters and according indirect control
paradigm, a desynchronization cannot be induced by price as
the signal for indirect control is the same for all DSRs.
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Fig. 10. Population power consumption for three values of the variance of
the Gaussian noise term η in Eq. 1.

One might wonder if dynamic effects are reduced by shed-
ding the consumption instead of shifting it. Fig. 11-I shows
the aggregate power consumption of the same population
discussed above with the difference that the temperature offset
is not high pass filtered (Fig. 11-III). Oscillations are still
present because the initial drop of power provoked by the

1Standard deviations in Fig. 10 refer to the discretized thermal model
(sampling time 300 s). For example, ση = .1 means than in five minutes
the evolution of the model could be perturbed up to ±0.2 ◦C at 95% of
probability.

variation of the price signal does not match the power variation
at steady state.
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Fig. 11. Consumption shedding instead of shifting.

V. CONCLUSIONS
The topic of indirect controlling a large population of

DSRs is addressed. It is shown that a variation of the price
signal provokes a synchronization in the consumption of the
DSRs that can lead to unwanted oscillations of the aggregate
power response. The same phenomena is observed to happen
also when the consumption is curtailed rather than shifted.
It is shown that diversificating the state of DSRs composing
the population reduce the peak of the kickback effect. This
suggests that a random component could be taken into account
in the local price responsive controller in order to dump the
oscillations and avoid a deep a kickback.

REFERENCES
[1] C. Gellings, “The concept of demand-side management for electric

utilities,” Proceedings of the IEEE, vol. 73, no. 10, pp. 1468–1470, 1985.
[2] D. Miller and T. Sleva, “Cold load pickup issues,” tech. rep., Power

System Relay Committee of The IEEE Power Engineering Society, May
2008.

[3] S. Lee and C. Wilkins, “A practical approach to appliance load control
analysis: a water heater case study,” power apparatus and systems, ieee
transactions on, no. 4, pp. 1007–1013, 1983.

[4] N. Ruiz, I. Cobelo, and J. Oyarzabal, “A direct load control model for
virtual power plant management,” Power Systems, IEEE Transactions on,
vol. 24, no. 2, pp. 959–966, 2009.

[5] C. Perfumo, E. Kofman, J. H. Braslavsky, and J. K. Ward, “Load
management: Model-based control of aggregate power for populations of
thermostatically controlled loads,” Energy Conversion and Management,
vol. 55, pp. 36–48, 2012.

[6] N. A. Sinitsyn, S. Kundu, and S. Backhaus, “Safe protocols for gen-
erating power pulses with heterogeneous populations of thermostatically
controlled loads,” Energy Conversion and Management, vol. 67, pp. 297–
308, 2013.

[7] DTU, “Powerflexhouse,” 2013.
[8] “Bygnings-og boligregistret.” www.bbr.dk.


