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A Comparison of Algorithms for Controlling DSRs
in a Control by Price Context Using

Hardware-in-the-loop Simulation
Fabrizio Sossan, Henrik Bindner

Abstract—With future increasing of electric energy production
from fluctuating sources, the need for regulating power willrise
and conventional power plants - that today provide all power
system ancillary services - could not have the capability and
the flexibility of providing it. Demand Side Resource, DSRs,
are electric loads whose power consumption can be shifted
without having a big impact on the primary services they are
supplying and they are suitable for being controlled according
the needs of regulating power in the electric power system. In this
paper the performances and the aggregate responses provided by
three algorithms for controlling electric space heating through
a broadcastedprice signal are compared. The algorithms have
been tested in a software platform with a population of buildings
using a hardware-in-the-loop approach that allows to feedback
into the simulation the thermal response of a real office building;
the experimental results of using a model predictive controller
for heating a real building in a variable price context are also
presented.

This study is part of the Flexpower project whose aim is
investigating the possibility of creating an electric market for
regulating power with a big participation of DSRs and small
scale generation units.

Index Terms—control by price, Demand Side Resources, Smart
grids.

I. I NTRODUCTION

Demand side resources, or DSRs, are electric loads that
provide services that are naturally coupled to some kind
of storage; this allows to control, schedule or shift their
power consumption without having a big direct impact on
the quality of the primary services they are providing to the
users. Examples of demand side resources are space or water
heating, electric vehicles or also fully deferrable load such
as washers or dishwashers. Because of their flexibility, DSRs
are suitable to be controlled in order to contribute to power
system services with respect to their constraints, physical
limits and local settings [1]. DERs exploitation is based onthe
consideration that the contribution from the single unit issmall
but the aggregate response of a big number of devices might
be relevant. Demand side resources can be directly controlled
(for example by a power reference signal), they can react in
order to response to a deviation of the grid frequency or, a time
shift in their electric power usage can be achieved using a price
signal for the electric energy [2][3]: this economic incentive
should induce the demand side user to consume more power
when the energy is cheap (and in the case to store it) and to
reduce the consumption when the price for the energy is high.
Users response to price signal is spontaneous and based on
local comfort or operational preferences. Using price signal,

is a convenient form of control since the decision is computed
locally while in the case of direct control the information
(local conditions for example) should be propagated from each
devices up to some aggregator which should send a control
signal to drive each of them. The critical part of a control-by-
price approach is the price signal itself because, for producing
it, the response of the distributed demand side resources should
be known since it is required in the market process[4]. In
Flexpower project, the aim is to use control by price approach
for supporting the amount of regulating power needed by the
power system [5].

In this paper the performances of three algorithms with price
responsiveness capability for controlling domestic electric
space heating through a broadcasted price signal are compared.
The proposed algorithms have different level of requirements:
two of them work basing their decision on historical data of
the price signal; the third one is a model predictive controller
(MPC) and it uses both prices and real weather forecast.

In this comparison, the price signal is artificial and it is built
with the aim of highlighting the pros and cons of each control
algorithm. The algorithms have been compared adopting both
a final user point of view, evaluating the deviation from the
optimal comfort level (the indoor temperature set-point inthis
case) and the total cost for the energy used, and the power
system one; from the power system perspective, it would be
useful having a devices with a good price responsiveness ca-
pability, able to reduce or to decrease the power consumption
steadily for a long time and predictable in the behavior.

The control algorithms have been tested using a Java
simulation platform with a population of houses. For intro-
ducing more realism into the simulation, ahardware-in-the-
loop approach has been used: the thermal dynamics of a real
building have been introduced in the simulation and they are
used for perturbing in real time the behaviors of all the houses
inside the population.

Detailed descriptions about the simulation platform, the
hardware in the loop feedback, the thermal models, the control
algorithms and how their performances have been compared
are given in Section II.

Section III is for presenting and discussing the results of the
simulations: both the aggregate response of the populationof
buildings and the experimental result of the model predictive
controller applied on a real house are reported. A compari-
son of the performances obtained with the different control
algorithms is then presented.

Section IV is for conclusions.
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Fig. 1. The experimental setup used for the proposed simulations with
the FlexHouse building as thehardware-in-the-loop for reproducing the real
environmental conditions. Weather forecastWi and the pricepi signal are
used.

II. M ETHODS

The software tool used for performing the simulations is
a Java based dynamic simulator which allows to implement
generic models and control algorithms. The simulation plat-
form allows for simulating a large number of units and for
having different controllers implemented concurrently; the
functionalities of the simulation platform have been integrated
with the distributed power system facility SYSLAB[6] in order
to perform a real time hardware in the loop simulation intro-
ducing the thermal dynamics of a real building, FlexHouse
[7]. FlexHouse is a small office building which is heated by
ten 1kW electric heaters that can be controlled.

The diagram of the simulation scenario is shown in Figure 1.
The box with the small gray circles represents the population
of houses that is implemented in the simulator. The distur-
bation signal∆Ti, which is obtained comparing the indoor
temperature of FlexHouse with its model implemented in the
simulator, perturbs the behavior of all the simulated buildings
in order to reproduce the effect of the real environment and
operating conditions (uncertainties in the modeling and in
weather forecast). Of course environmental local conditions
like wind, outside temperature and solar radiation, act on
FlexHouse.

The output of each implemented control algorithm is a
signal that drives the electric heaters. In the case of FlexHouse,
the same control signal is applied both to the real building
and to the model inside the simulation platform in order to
compare the real behavior with the simulated one.

The output of the simulation is the temperature profile and
the power usage of each building: the sum of them gives the
aggregate electric power consumption. Also the experimental
data regarding FlexHouse activity are made available by the
simulation platform.

In this experimental setup, the price signalpi is simulated
and it is built for trying to demonstrate which algorithm
performs better within this framework. In accordance with
Flexpower project, the price for the electric energy is updated
every five minutes.

Weather forecastWi for the area is delivered by a FTP

service; the weather forecast is used both by the model pre-
dictive controller and for evolving the state of thermal models.
Forecast is released every day and with a time resolution of
one hour: smaller time steps are required for computing the
models evolution so the same resolution of the price signal,
five minutes, is achieved simply using linear interpolation.

Despite local conditions measurements, such as outdoor
temperature or solar radiation, are available in SYSLAB, they
are not used by the implemented control algorithms because
it would not be realistic in an future diffusion of the control
by price since it would increase the complexity and cost of
the system for the many sensors to add around.

A. Thermal models

Reference [8] present several linear thermal models for
FlexHouse. They are reported in increasing order of complex-
ity (states number) and they are built using a grey-box ap-
proach where the parameters are computed using a maximum
likelihood estimator with real measurements from FlexHouse.
The one selected for this implementation is the simplest one,
a 1-state linear model. This model is used both for describing
FlexHouse dynamics and the population of buildings; for this
last purpose, the parameters of the model have been slightly
varied following a normal distribution for taking into account
small differences in size and thermal conductivity features.

The population of the buildings is composed by four iden-
tical groups of fifty houses each. Each group of buildings is
driven by a different type of controller (presented later) and
the temperature evolution of each model is perturbed at each
step by the measured input discussed before.

For a better description of the thermal behavior of a
building, a two states model could be used for representing
the transients both of the air and of the building envelope.
The reason why a simpler 1-state model has been chosen is
that FlexHouse only disposes of the indoor air temperature
information so this is the only measure available for initializing
the model (a state estimator could be considered in the case
of linear models with larger order). The hardware in the
loop approach provides to the simulated population of house
an even more realistic footprint to the thermal transient.
The problem still remains for the MPC, where the 1-state
model could not give a good prediction on the future indoor
temperature during transient (the steady state response isthe
same) resulting in a worse performance of the controller.

B. Control algorithms

The control algorithms for whom the performance is com-
pared have different levels of complexity and requirements.

The simplest one is the traditional thermostatic controller
and it has been included mainly for having a comparison with
the current situation.

The second algorithm is a simple extension of the traditional
thermostat where a price response capability has been added:
in the temperature hysteresis cycle, the controller can choose
to switch on the heating for storing thermal energy if the
proposed price for the electric energy is cheaper than the prices
paid in average (in the past) or otherwise to shutdown it.
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The third control algorithm is proposed by [9] and [10];
again, the decision process is based upon considerations onthe
historical prices. At each timei, when a new price for electric
energy arrives, the temperature set-point for the thermostatic
controller is modified from the optimal one using the quantity
∆Ti defined in the Equation 1:

∆Ti = −k p̂i (1)

p̂i =
pi − pi
σi

(2)

where pi, pi and σi in Equation 2 are respectively the
current price, the moving average and standard deviation of
the price history for the last 24 hours. Coefficientk is a
positive constant and sets the price responsiveness capability
of the controller.̂pi is calledrelative price. The result achieved
by this controller is to produce a temperature deviation∆T
proportional to the relative price and in general it is negative
when the price is greater than the average of the old ones: so
the new temperature set-point will be smaller than the previous
one and vice-versa.

The fourth and last controller uses a thermal model for
computing the future temperature states of the house and it
minimizes a cost expression in the form of Equation 3 with
finding an appropriate heating power profile; the target of the
algorithm is to reduce future deviations from the temperature
set-point paying as little as possible for the electric energy.

J = k1q(T (tf)) +

∫ tf

0

k2q(T (t)) + r(u(t))p(t) dt (3)

The symbolsT andu, both time dependent, are for indoor
temperature and heating power respectively. The integration
interval starts from the current instant,0, until the length of
optimization horizontf . The functionsq(T ) and r(u) are
numerical weighting barrier functions that assume high values
when the independent variable approaches non admissible
values. Their shape is shown in Figure 2. Functionp(t) is the
price signal that, multiplied by the electric power used by the
heaters and integrated in time, gives a energy cost. Since the
integral looks ahead in time,p(t) is a price forecast series. As
said before, the price signal is artificial and, in this approach,
it is assumed to know the price forecast without error. The
factor k2 determines the price responsiveness capability of
the controller. The goal of the optimization process is finding
the optimal control lawuo(t) that is able to minimize the
cost expressionJ of Equation 3. For finding the minimizing
control uo(t), a numeric algorithm based on the gradient
descent method[11] has been used and it is applied each time
a new price for the electric energy is released (five minutes).
The indoor temperatureT should be treated as stochastic
variable but in this approach the problem formulation is left
deterministic since the receding horizon configuration brings
a natural feedback into the system because the algorithm
retrieves a new indoor temperature reading every five minutes,
together with the price signal and weather forecast. A similar
approach for a MPC but using linear programming is in [12]
and [13].

Both end user and power system point of views have been
taken into account in the comparison of the performances of
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Fig. 2. The weighting functions used in the cost expression of the MPC.

the different algorithms. The following three indicators have
been evaluated.

1) temperature comfort penalty function: it is computed as
the integral in time of the aboslute value of the temperature
deviation∆T from the set-point (chosen as23◦C for all the
population of simulated buildings and FlexHouse). States of
under-temperature have been weighted1.2 times more than
over-temperature conditions; a second temperature penalty
function is considered and it is the integral in time of the
temperature deviation when it is out of the admissible comfort
interval (defined as23± 3◦C).

2) total cost of energy: it is simply the integral in time
of the electric power used for heating multiplied by the price
signal;

3) price responsiveness capability: it is defined as the
variation of heating power produced by a control algorithm
with respect to price variation that isdP/dp with P power
consumption.

The first two indicators take into account the user comfort
and economic benefit, while the last one is important from
power system perspective since it gives a measurement of the
control capability that each algorithm adds, in this case, to
domestic electric heating. The second indicator, the totalcost
for the energy, gives also a measurement of the capability of
the algorithm to move electric power consumption in instants
of time with lower energy prices.

The number of on-off cycles produced by the algorithms
has not been take into account in this analysis; anyway this
is a relevant aspect if electromechanical devices for powering
heaters are used, since their life is heavily affected by the
number of switching cycles.

III. R ESULTS AND DISCUSSION

As introduced before, the simulation here presented is
obtained applying the heating power setting computed by the
predictive controller to both a real building (FlexHouse) and
its model. The difference between the two responses is then
used for perturbing the state of all the other buildings inside
a real time simulation, where the behavior of 200 houses
(divided in four identical groups of 50 buildings with each
group driven by one of the four algorithms discussed before)
is reproduced. The temperature set-point for all the buildings is
23◦C and the allowed offset is±3◦C. An artificial new price
is broadcasted every five minutes together with real weather
forecast. The price signal is a sine wave with decreasing
frequency. Plots in Figure 3 and 4 are split in two parts for
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Fig. 3. The experimental data from FlexHouse with the model predictive
controller. Plota shows the heating power,b is the indoor temperature andc
is the artificial price signal.

convenience of visualization; the former part is for the high
frequency components of the price signal, the latter is for the
consecutive rest of time where price signal presents slower
variations. The optimization horizon length of the predictive
controller is five hours and it has been chosen according the
thermal time constant of FlexHouse; as said before, MPC uses
real weather forecast and the price signal forecast is supposed
known without error.

Time t = 0 in the plots refers to 18:16 pm of October the
13rd 2011 and the simulation lasts for 5.2 days.

Since the price signal is artificial and it was created for
enabling the comparison between algorithms, its unit of mea-
sure on the plots is not specified and it is intended as a generic
monetary value for unit of energy.

The firsts plots in Figure 3 show the experimental results
of the application of the model predictive controller to Flex-
House. The attempt of the controller to move the electric
energy consumption when the price is low is visible. With the
decreasing of the frequency of the price signal, the controller
starts to lose the capability of shifting the energy usage and
the power is dictated by the indoor temperature because the
house does not have enough thermal inertia to maintain the
indoor temperature in a acceptable range.

Figure 4 shows the aggregate response of the four different
groups of buildings; each of them is driven by a different
controller according to the plot legend:ts stays for thermostatic
controller,tsp is for second algorithm discussed in Section II,
cet is the third andpc is the model predictive controller. The
data in the bottom graph have been elaborated with a low
pass filter for a better visualization. As Figure 4 shows, the
output produced by each controller with price responsiveness
capability is very different from the green area that is the
thermostat action; this means that they are all exploiting
the flexibility offered by the price signal but in different
ways. Again, with the increasing of the period of the price
signal, all the controllers tend to show a behavior more and
more similar to the thermostatic controller action becausethe
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Fig. 4. A comparison of the output of the four different controllers. The
two plots are consecutive and with different time scale. Data in the plotb
have been filtered with a low pass filter for a better visualization of the main
frequency components.

thermal inertia is not enough for both being able respond to
slow price variation and maintaining the indoor temperature
in an acceptable comfort level.

Figure 5 shows the average temperature profiles for the four
different groups of buildings. Plota shows the instant deviation
from the indoor temperature set-point (23◦C). Plot b shows
the accumulated error computed as the integral of the absolute
value of the deviation, where the states of under temperature
have been weighted20% more than states of over temperature.
Plot c shows the accumulated absolute value of the error when
the temperature is not in the admissible range23± 3◦C. Plot
b shows that the thermostatic controller is the more precise
in keeping the temperature close to the optimal set-point; plot
c shows that the model predictive controller is the one that
performs best in keeping the temperature of the buildings in
the defined acceptable range. It is worth to notice the behavior
of the two thermostatic based controllers (black and green
profiles): in fact they always should be able to maintain the
temperature in the thermostatic interval but, in the days ofthe
simulation, the weather was cold (7/12◦C) and sunny in the
Copenhagen area and during the day hours the sun was able
to warm the buildings in a significative way and more than
the allowed range. This explain why the thermostatic based
controllers have this accumulated error different than zero; in
this case the model predictive controller takes advantage of
the weather forecast and it is able to perform even better than
them. The control algorithm that corresponds to the blue line
does not show a good performance in plotc because the way
the temperature offset is computed (Equation 1) can easily lead
to temperature references quite different from the real desired
optimal one.

Figure 6 shows the cost of the energy for the different
control algorithms. Plota is the instant energy bill and plotb
represents the average on the population amount of money
that the final user would save (in a variable price context
of course) applying the different algorithms with respect to
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Fig. 5. Plota shows the temperature deviation from the set-point (23◦C) for
the different algorithms. Plota is the accumulated error (with states of under
temperature have been weighted 1.2 times more). Plotc is the accumulated
error for the temperature deviation from the comfort area that is 23± 3◦C.

using traditional thermostatic controller. Plots in Figure 6
show that the model predictive controller is the algorithm
that performs best together with the very simple modified
thermostatic controller. It is worth to notice that, despite
weather forecast are real, the price signal is assumed known
and so in the case of the energy bill the performance of the
model predictive controller could be worse if wrong forecast
are provided. Anyway, with good price forecast the MPC
controller is the algorithm supposed to still give the best result
because it is the only one that, using forecasts, takes advantage
of looking into the future for a better utilisation of the thermal
energy stored in the buildings. So, for example, if the price
forecast are indicating an increment in the future energy price,
MPC algorithm is the only one that is able to start to store
thermal energy at some point (with switching the heating on)
in order to avoid to pay more money for the same energy
amount later.

Figure 7 shows the price responsiveness for the proposed
algorithms. Price responsiveness is defined asdP

dp
, that is the

variation of electric power usage achieved by an algorithm
given a certain variation of the price of the energy. Each
point on the plot is the mean of a distribution of values
that are the different responses that the algorithm gives to
such variation of price. The standard deviationσ for each
distribution is reported on each mean value with the vertical
bar on the plot: how the bars show, the aggregate response
is not really predictable and may vary in a very significative
way because it is function of a wide number of parameters,
such as time, outside temperature, wind speed, solar radiation,
thermal features of the buildings, thermal history and so on.
Anyway the contour lines in the plot of Figure 7, that are
the fourth grade polynomials obtained applying least square
method to the mean values of the distributions, show a clear
tendency we could expect about the behavior of the algorithms
that is that the controllers with price responsiveness capability
are able to reduce the power consumption when there is a
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Fig. 6. Plota shows the instant values of the electric bill. Plotb shows the
money saved with respect to the traditional thermostatic controller in a price
signal context.

positive variation of the price and vice-versa; as the flat green
lines shows, the thermostatic controller does not offer price
responsiveness at all. The algorithms that show the best price
responsiveness capabilities are the model predictive controller
and the one namedcet.
With computing the average of the standard deviation of the
populations along the x-axis, it is possible to get an idea
of which algorithm would result in the best predictability of
the price response for this simulation: the controller withthe
less standard deviation iscet, then tsp and finally the model
predictive controller.
An interesting point of the price responsiveness of Figure 7
is to see if increasing the number of buildings of one order
of magnitude could improve its shape in the sense of having
smaller values for the standard deviations and, so, increasing
the predictability of the behaviors of the buildings; in fact these
curves could be used for estimating the prediction of power
usage variation given a electric energy price and they couldbe
used for bidding in the electric market for computing a price
signal.

IV. CONCLUSION

In this paper the performances of three different algorithms
suitable for controlling domestic electric space heating through
price signal are compared. Control algorithms have been
compared analyzing the aggregate response of a population
of buildings inside a simulation platform using ahardware-
in-the-loop approach: a temperature feedback signal from a
real office building perturbs in real time the behaviors of
all the buildings simulated in the platform in order to take
into account environmental uncertainties and so pretend more
realism from the simulation. Besides, the experimental results
of using a model predictive controller on a real house have
been presented. Real weather forecast for the area are used for
the model predictive controller. The price signal used in the
simulation is artificial and created for enabling the comparison
between the different algorithms.
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Control algorithms are compared taking into account the
comfort level they can achieve (measured as the deviation
from the optimal indoor temperature), the total cost for the
energy they require and the price responsiveness capability,
defined as the change in the electric power usage when a
variation in the electric energy price is proposed.

All the control algorithms here presented show a positive
capability of moving the energy consumption from moments
where the energy is expensive to cheaper energy time frames
(Figure 7) and maintaining a reasonable comfort level in the
buildings. All the algorithms start to lose effectiveness when
the frequency of the price signal decreases; this because the
thermal inertia of the buildings is not big enough to maintain
the indoor temperature in the allowed range.

Anyway the algorithm that shows the best global perfor-
mance is the model predictive controller; in the case of the
indoor temperature comfort level, it behaves even better than
the thermostatic based controllers (Figure 5.c) because, taking
advantage of weather forecast and the thermal model, can
predict the effects of solar radiation (that in the days of the
experimental simulation was important) and take appropriate
counteractions. MPC is also able to produce the cheapest
energy bill if compared with the other two algorithms. In the
case of the proposed simulation, we assume perfect foresight
for the price signal and this would not be the case in a real
application where errors in forecasting are expected. Anyway
in presence of good forecast for the price signal, the model
predictive controller should still be the best one also in terms
of energy cost since it is the only one that can look into the
future and, for example, start to store energy if it detects a
future increase in the price; this allows a better management
of the energy stored in the buildings.

From the point of view of the infrastructure, model predic-
tive controller does not have more hardware requirements than
other controllers since they all need to receive a price signal

and some kind of logic to implement the algorithm; once the
communication and hardware requirements for enabling the
transmission of price signal are set up, weather forecast and
price forecast are services that can be built on the top of
the system without having impact on the complexity of the
hardware architecture. The problem of how to compute good
price forecast still remains since the aggregate response of
DSRs is not perfectly predictable, time variant and dependent
on many variables such as local conditions.
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